Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Циклические коды, исправляющие кратные ошибки






Циклические коды, исправляющие кратные ошибки, обычно называются кодами БЧХ (от фамилий авторов: Боуз, Чоудхури, Хоквенгем). Хорошие корректирующие свойства и простота построения кодирующих к декодирующих устройств (особенно при необходимости обнаруживать ошибки) обеспечили кодам БЧХ широкое практическое применение. Согласно ГОСТ 17422-72, основанному на рекомендации МККТТ V× 41, в системах передачи данных с решающей обратной связью предписывается использовать циклические коды со следующими параметрами: n=140, 260, 500 и 980, порождающий многочлен х16125+1.

Алгоритмы декодирования кодов БЧХ довольно сложны, и их рассмотрение не входит в программу данного курса. В некоторых случаях при небольших длительностях кодовых комбинаций для исправления ошибок может быть применен описанный в подразделе 3.3.6. алгоритм декодирования в более развитом виде. В циклических кодах, исправляющих ошибки до кратности р, при расположении всех ошибок в проверочных разрядах синдром ошибок будет содержать не более р единиц, находящихся в разрядах с ошибками. Это значит, что исправлять ошибки в таком случае можно суммированием остатка с исправляемой комбинацией. Ошибкам в информационных разрядах соответствуют синдром с количеством единиц, большим чем р.

На основании изложенного методика исправления кратных ошибок кодом БЧХ при небольших длинах кодовых комбинаций может сводиться к следующему.

1. Принятая комбинация делится на порождающую.

2. Определяется количество q единиц в остатке:

а) если q≤ p, где p - максимальное количество ошибок, исправляемых данным кодом, то ошибок в информационных разрядах нет;

б) если q> p, ошибки есть в информационных разрядах. В этом случае к остатку приписывается необходимое количество нулей, деление продолжается, подсчитывается количество нулей в новом остатке, и при необходимости аналогичная процедура повторяется до получения остатка с количеством единиц p=q.

3. Декодируемая комбинация сдвигается циклически влево на количество разрядов, равное количеству нулей, приписанных в процессе деления, остаток суммируется со сдвинутой комбинацией, после чего комбинация сдвигается в противоположную сторону, т.е. вправо, на то же количество разрядов.

Пример. Применен код БЧХ 15, 5, способный исправлять почти все ошибки тройной кратности. Порождающий многочлен кода записывается так: р(х)=х108543+х+1, что эквивалентно комбинации 10100110111. Требуется декодировать принятую комбинацию 100001101110101.

Производим деление:

100001101110101 / 10100110111

Å 10100110111

==10000000001

Å 10100110111

==10011011001

Å 10100110111

==11110111000

Å 10100110111

=10100011110

Å 10100110111

=====101001

В остатке три единицы, следовательно, на этом деление прекращаем. В процессе деления к делимой комбинации было дописано три нуля, поэтому для исправления ошибки декодируемую комбинацию сдвигаем на три разряда влево, суммируем с остатком:

Å 101001

001101110000101

и сдвигаем на три разряда вправо: 101001101110000. Ошибки исправлены. В соответствии с видом синдрома ошибки имели место в 1, 4 и 6-м разрядах сдвинутой комбинации, т.е. в 1, 3 и 13-м разрядах принятой комбинации.

Указанная методика пригодна, например, для кода (15, 7), исправляющего одиночные и двойные ошибки. В коде (15, 5), исправляющем и тройные ошибки, данная методика позволяет исправлять почти все тройные ошибки (не исправляются тройные ошибки только в случае их расположения в следующих разрядах: ai, ai+5, ai+10, где i≤ 1¸ 5).

 

Литература:

[1] стр. 247-255. [2] стр. 285-289. [3] стр. 149-154.

 


Контрольные вопросы:

1. Являются ли циклические коды групповыми?

2. Какими дополнительными свойствами, упрощающими технику кодирования и декодирования, обладают циклические коды по сравнению с групповыми?

3. Какими свойствами должен обладать порождающий многочлен циклического кода?

4. Как проще всего определять синдромы ошибок в циклических кодах.

 

Задачи:

1. Записать все разрешенные комбинации циклического кода (7, 4) с порождающим многочленом 1011.

2. Записать все разрешенные комбинации циклического кода (7, 4) с порождающей комбинацией 1101.

3. Задан циклический код (7, 4) с порождающей комбинацией 1011. Записать синдромы всех исправляемых кодом ошибок. Декодировать полученную комбинацию 1011111.

4. Получена комбинация 1111010, закодированная циклическим кодом (7, 4) с порождающей комбинацией 1101. Код используется для обнаружения одиночных и двойных ошибок. Указать возможные варианты ошибок в полученной комбинации.

5. Используется код БЧХ с порождающим многочленом

х108543+х+1

Закодировать комбинацию 11111, ввести в закодированную комбинацию три ошибки и исправить их по указанной методике.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал