Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение. 1. Находим модуль равнодействующей






1. Находим модуль равнодействующей. Как известно,

Но если ось х расположить перпендикулярно силам, а ось у — параллельно (рис. 1.47, а), направив ее положительный отсчет вниз, то проекции каждой из сил на ось х равны нулю и, зна­чит,

а проекции сил на ось у равны их модулям с соответствующими зна­ками: F1y = F1 = 6 Н; F2y= F2 = 8 H; F3y = F3 = 10 H; F4y = F4 = 15 Н и F5y = F5 = 3H.

Таким образом, модуль равно­действующей системы параллель­ных сил

Вектор равнодействующей FΣ направлен параллельно составляю­щим силам в сторону положитель­ного отсчета оси у, если XFky > 0, и в сторону отрицательного отсчета, если Σ Fky < 0.

 

 

В данном случае FΣ = Σ Fк = 6 — 8 + 10 + 15 — 3 = 20 Н, т. е. равнодействующая равна 20 Н и направлена вниз.

2. Изобразим эту равнодействующую условно штриховой линией на некото­ром расстоянии х от начала координат (рис. а) и запишем моменты всех сил относительно точки Ах'

И, согласно теореме Вариньона, получим

— FΣ x = F2 * A1A2 – F3 * A1A3 – F4 * A1A4 + F5 * A1A5

Отсюда после подстановки известных числовых значений сил и плеч —20 x = 8 – 0, 2 — 10 – 0, 4 — 15 – 0, 6 + 3 – 0, 8, получим

Следовательно, FΣ = 20 Н, а ее линия действия, параллельная составляющим силам, проходит от точки A1 на расстоянии l = 0, 45 м (рис. 1.47, 6).

 

 

Известные из физики зависимости, возникающие при сложении двух параллельных сил, можно получить из теоремы Вариньона.

Даны приложенные к телу параллельные силы F1 и F2, направ­ленные в одну сторону. Согласно равенству FΣ = Σ Fk ясно, что в данном случае

а вектор равнодействующей FΣ , приложенный в некоторой точке С, направлен параллельно силам в ту же сторону.

Возьмем сумму моментов сил относительно точки С (точки, че­рез которую проходит линия действия равнодействующей). Тогда

и, следовательно,

или

отсюда получаем известную из физики пропорциональную за­висимость:

 

т. е. расстояния от линии действия двух параллельных сил до ли­нии действия равнодействующей обратно пропорциональны силам.

 

Легко доказать (проделайте это самостоятельно), что такую же за­висимость получим и при опре­делении равнодействующей двух параллельных сил, направленных в противоположные стороны, хотя в этом случае модуль равнодейст­вующей FΣ = F1 — F2. Направлена она в сторону большей по модулю силы, и линия ее действия распо­ложена не между слагаемыми силами, а за большей из них (рис. б).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал