Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Главные оси и главные моменты инерции






Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v.

u = y sin a + x cos a; v = y cos a - x sin a. Из выражений:

с учетом u = y sin a + x cos a; v = y cos a - x sin a. после несложных преобразований получим: (3.11)

Складывая первые два уравнения, получим: Iu + Iv = Ix + Iy = Ir, (3.12)

где; Ir - полярный момент инерции сечения, величина которого, как видно, не зависит от угла поворота координатных осей.

Дифференцируя в (3.11) выражение Iu по a и приравнивая его нулю, находим значение a = a0, при котором функция Iu принимает экстремальное значение: (3.13)

С учетом (3.12) можно утверждать, что при a = a0 один из осевых моментов Iu или Iv будет наибольшим, а другой наименьшим. Одновременно при a = a0 Iuv обращается в нуль, что легко установить из третьей формулы (3.11).

Декартовы оси координат, относительно которых осевые моменты инерции принимают экстремальные значения, называются главными осями инерции. Осевые моменты инерции относительно главных осей называются главными и определяются из (3.11) с учетом (3.13) и имеют вид:

В заключение введем понятие радиуса инерции сечения относительно координатных осей x и y - ix и iy, соответственно, которые определяются по формулам:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал