Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Кривые линии и их проекционные свойства.






Основные понятия и определения

Кривую линию можно представить как траекторию точки, перемещающейся в пространстве или на плоскости,

Кривая линия так же может быть получена в результате пересечения поверхности с плоскостью или двух поверхностей между собой,

Кривые линии могут быть плоские, т.е. такие, все точки которых принадлежат одной плоскости и пространственные, точки которых не принадлежат одной плоскости.

Примерами плоских кривых являются: окружность, эллипс, парабола. Примером пространственной кривой является винтовая линия,

Линия считается закономерной, если в своем образовании она подчинена какому - нибудь закону.

Если, при этом, кривая в декартовой системе координат определяется алгебраическим уравнением, то она называется алгебраической. Примерами алгебраических кривых являются окружность, эллипс, парабола, гипербола. Степень уравнения кривой определяет порядок кривой.

Кривая линия определяется положениями составляющих ее точек, Точки кривой определяются их координатами.

На чертеже кривая задается своими проекциями. Для построения ортогональных проекций кривой (пространственной или плоской) необходимо построить проекции ряда точек, принадлежащих этой кривой, и соединить их между собой в той же последовательности, в какой они располагались на оригинале, При задании кривой ее проекциями необходимо указать, по крайней мере, проекции одной точки, принадлежащей кривой (рис.7.1.).

По чертежу кривой в общем случае можно без дополнительных построений определить пространственная она или плоская. На рис.7.1. кривая а пространственная, т.к. она имеет конкурирующие точки С, D. Если по чертежу не понятно, плоская кривая или пространственная, требуются дополнительные построения. На кривой нужно выбрать три произвольные точки и проверить, лежит ли любая четвертая точка кривой в плоскости, определяемой первыми тремя. Кривая m, изображенная на рис.7.2. пространственная, т.к. точка М(М¢, М²) не лежит в плоскости a заданной точками А, В, С этой кривой.

 

7.2. Некоторые свойства проекций пространственных и


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал