Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Устойчивость алгебраических методов.Стр 1 из 6Следующая ⇒
Лекция 3 УСТОЙЧИВОСТЬ И ТОЧНОСТЬ ПРЯМЫХ МЕТОДОВ ЦЕЛЬ ЛЕКЦИИ: Выполнить оценку устойчивости и точности прямых методов; показать, как перестановкой строк и столбцов обеспечивается устойчивость и точность прямых методов, каким образом осуществляется выбор матриц перестановки строк и столбцов в случае систем с разреженной матрицей. Устойчивость алгебраических методов. Прямые методы в отсутствии ошибок округления позволяют получить точное решение системы . Современные вычислительные машины оперируют с конечными десятичными дробями, представленными в форме с плавающей точкой. В этом случае уже на этапе запоминания элементов матрицы A и вектора в памяти ЭВМ вносится ошибка округления и реально решается возмущенная система . Здесь и – возмущения матрицы системы и вектора правой части. Для элементов матрицы и компонент вектора справедливы оценки , где – элемент матрицы A, – компонент вектора , ε – число, характеризующее относительную погрешность машинной ариф-метики. Например, для двоичных ЭВМ, использующих арифметику с плавающей точкой и t – разрядную мантиссу, . Перейдем к более общей числовой оценке возмущений – норме. Из записанных выше неравенств следует, что , где знаком обозначена какая-либо норма вектора и согласованная с ней норма матрицы. Поясним теперь суть одного из наиболее разработанных подходов к анализу устойчивости алгебраических методов. Пусть – приближенное решение СЛАУ, полученное применением некоторого прямого метода. Очевидно, что вследствие ошибок округления при реализации на ЭВМ прямого метода это решение не будет точно удовлетворять системе . Пусть, однако, удается показать, что является точным решением системы . Если для матрицы F и вектора , называемых эквивалентными возмущениями метода, можно получить оценки вида , где f(n), h(n) - некоторые степенные функции типа с небольшим показателем k, то метод считается устойчивым по Уилкинсону. Такой вид функций f(n), h(n) объясняется тем, что в процессе реализации прямых методов на ЭВМ неизбежно некоторое накопление ошибок округления, пропорциональное числу арифметических операций, за которое прямой метод приводит к решению.
|