Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Схема итерационных методов.Стр 1 из 2Следующая ⇒
ИТЕРАЦИОННЫЕ МЕТОДЫ ЦЕЛЬ ЛЕКЦИИ: Дать общую схему линейных итерационных методов первого порядка и построить на её основе методы простой итерации, Гаусса–Зейделя, последовательной релаксации; сравнить эти методы по вычислительным затратам на итерации. В случае больших разреженных СЛАУ предпочтение отдаётся итерационным методам, т. к. они, во-первых, не приводят к появлению на итерациях новых ненулевых элементов, во-вторых, оказываются более эффективными по затратам машинного времени. Схема итерационных методов. Пусть требуется решить систему . Предположим, что Q – неособенная -матрица, рассматриваемая как апроксимация матрицы A, для которой решение системы не представляет особого труда. Это имеет место тогда, когда матрица Q является нижней треугольной, верхней треугольной, трёх-диагональной, произведением конечного числа таких простых матриц и т.п. Матрицу Q называют матрицей расщепления. Перепишем исходную систему в виде . Построим итерационный процесс Разрешим его относительно : , или . Введем обозначения: ; . Тогда итерационную схему можно представить в виде Это линейная схема первого порядка. Поскольку итерационная матрица B на итерациях является постоянной, то такую схему называют стационарной. Достаточное условие сходимости этой итерационной схемы имеет вид . Убедимся в этом. Обозначим вектор погрешности на k -м шаге через , на (k+1) -ом шаге – , точное решение – . Тогда . Учет этих соотношений в итерационной схеме позволяет записать Отсюда . При видно, что , т. е. метод сходится к решению. Построим теперь вычислительные схемы, выбирая конкретный способ формирования матрицы раcщепления.
|