Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Молочнокислое и маслянокислое брожение. Химизм.






Молочнокислое брожение вызывается молочнокислыми бактериями. Оно состоит в превращении Сахаров в молочную кислоту. Схема молочнокислого брожения следующая:

САХАР ---> МОЛОЧНАЯ КИСЛОТА + ЭНЕРГИЯ

При этом выделяется небольшое количество побочных продуктов (пировиноградная кислота и водород).

По характеру брожения различают две группы молочнокислых бактерий. Гомоферментативные (типичные) бактерии превращают приблизительно 90% лактозы в молочную кислоту с ничтожным содержанием побочных продуктов – СO2 или уксусной кислоты.

К типичным возбудителям молочнокислого брожения относятся кокковые и палочковидные бактерии, не образующие спор. К гомоферментативным молочнокислым бактериям принадлежат следующие: молочнокислый стрептококк, сливочный стрептококк, термофильный стрептококк, болгарская палочка, ацидофильная палочка, сырная палочка, дельбрюковская палочка и др.

Гетероферментативные (нетипичные) бактерии образуют примерно 50% молочной кислоты и наряду с ней 25% уксусной кислоты и этилового спирта, 25% углекислого газа. К ним относится кишечная палочка – постоянный обитатель кишечника человека и животных.

Молочнокислые бактерии в качестве источника азота используют аминокислоты или пептоны. Эти бактерии очень требовательны к витаминам и особенно к витамину В2 (лактофлавин). Источником углерода для них служат моносахариды (глюкоза, галактоза, левулоза), дисахариды (лактоза, сахароза, мальтоза), пентозы (арабиноза), многоатомные спирты, многоосновные кислоты и даже белки.

Молочнокислое брожение используется в молочной промышленности для изготовления простокваши, творога, сметаны, кефира, кислосливочного масла, ацидофильного молока и ацидофильной простокваши, сыров, квашеных овощей, при приготовлении хлебных заквасок, молочной кислоты. Молочнокислые бактерии широко применяют также при силосовании кормов, при выделке меховых шкурок и в производстве молочной кислоты.

Молочнокислое брожение может быть и причиной порчи некоторых продуктов: скисания молока, вина, «кислотного брожения» в консервах и др.

Маслянокислое брожение вызывается маслянокислыми анаэробными бактериями, которые превращают многие углеводы (сахара, крахмал, декстрины, пектиновые вещества) и высшие спирты (маннит, глицерин) в масляную кислоту, образуя при этом углекислый газ, водород и энергию. Схема маслянокислого брожения следующая:

САХАР ---> МАСЛЯНАЯ КИСЛОТА + УГЛЕКИСЛЫЙ ГАЗ + ВОДОРОД + ЭНЕРГИЯ

Оптимальная температура для развития маслянокислых бактерий +30...40 °С. Маслянокислое брожение хорошо протекает при нейтральной реакции. Если оно идет в кислой среде, то накапливается бутиловый спирт и ацетон.

Маслянокислым брожением получают масляную кислоту, обладающую горьким вкусом и резким запахом. Она широко применяется в технике. Эфиры масляной кислоты имеют приятный запах цветов или фруктов и используются для приготовления ароматических эссенций в кондитерской промышленности и при производстве газированных напитков, а также в парфюмерной промышленности (например, метиловый эфир с яблочным запахом, этиловый эфир с грушевым запахом, амиловый – с ананасным).

В народном хозяйстве маслянокислое брожение может приносить значительный ущерб. Если маслянокислое брожение развивается в пищевых продуктах, то они приобретают неприятный запах и горький вкус. Часто это брожение вызывает гибель картофеля и овощей, вспучивание сыров, бомбаж консервов, прогоркание молока, творога, сметаны и др.

Химизм брожения изучали многие ученые (Л.А. Иванов, А. Гарден, С.П. Костычев, К. Нейберг, A.H.Лебедев, Г. Эмбден, Я.О. Парнас и О. Мейергоф) Л.А. Иванов и A.H. Лебедев установили, что в процессе брожения важную роль играет фосфорная кислота Она содержится в дрожжах и во многих живых организмах в виде кислот: аденозинмонофосфорной (АМФ), аденозиндифосфорной (АДФ) и аденозинтрифосфорной (АТФ) Эти кислоты легко отщепляют фосфорную кислоту.
Весь процесс брожения (спиртового, молочнокислого, маслянокислого) можно условно разделить на этапы.
Первый этап — образование фосфорилированных сахаров. Молекула глюкозы (или другой гексозы) под действием фермента гексокиназы присоединяет остаток фосфорной кислоты от аденозинтрифосфата, причем образуются аденозиндифосфат и глюкопиранозо-6-фосфат, который под действием фермента глюкозо-фосфатизомеразы превращается во фруктофуранозо-6-фосфат. Последний при участии фермента фосфофруктокиназы присоединяет еще один остаток фосфорной кислоты от новой молекулы аденозинтрифосфата. В результате этой реакции образуются еще одна молекула аденозиндифосфата и фруктофуранозо-1, 6-дифосфат.

Далее фруктофуранозо-1, 6-дифосфат под действием фермента альдолазы обратимо распадается на 3-фосфоглицериновый альдегид и фосфодиоксианетон, которые могут превращаться друг в друга под действием фермента триозофосфатизомеразы.

35) Моносахариды (от греческого monos: единственный, sacchar: сахар), — органические соединения, одна из основных групп углеводов; самая простая форма сахара; являются обычно бесцветными, растворимыми в воде, прозрачными твердыми веществами.Некоторые моносахариды обладают сладкимвкусом. Моносахариды — стандартные блоки, из которых синтезируются дисахариды (такие, как сахароза, мальтоза, лактоза), олигосахариды иполисахариды (такие, как целлюлоза и крахмал), содержат гидроксильные группы и альдегидную (альдозы) или кетогруппу (кетозы). Каждый углеродныйатом, с которым соединена гидроксильная группа (за исключением первого и последнего), является хиральным, что дает начало многим изомерным формам. Например, галактоза и глюкоза — альдогексозы, но имеют различные химические и физические свойства. Моносахариды представляют собой производные многоатомных спиртов, содержащие карбонильную группу — альдегидную или кетонную.

Моносахариды в природе. Моносахариды входят в состав сложных углеводов (гликозиды, олигосахариды, полисахариды) и смешанных углеводсодержащих биополимеров (гликопротеиды, гликолипиды и др.). При этом моносахариды связаны друг с другом и с неуглеводной частью молекулы гликозидными связями. Пригидролизе под действием кислот или ферментов эти связи могут рваться с высвобождением моносахаридов. В природе свободные моносахариды, за исключением D-глюкозы и D-фруктозы, встречаются редко. Биосинтез моносахаридов из углекислого газа и воды происходит в растениях (см. Фотосинтез); с участием активированных производных моносахаридов — нуклеозиддифосфатсахаров — происходит, как правило, биосинтез сложных углеводов. Распад моносахаридов в организме (например, спиртовое брожение, гликолиз) сопровождается выделением энергии.

Хим. св-ва моносахаридов обусловлены наличием в их молекулах групп С=О (у ациклич. таутомера) и ОН. При действии NaBH4 в водном р-ре карбонильная группа моносахаридов количественно восстанавливается до спиртовой; образующиеся полиолы в виде летучих ацетатов или триметилсилиловых эфиров можно использовать для количеств.анализа смесей моносахаридов с помощью ГЖХ. Группы С=О альдоз в мягких условиях окисляются бромной водой с образованием лактонов альдо-новых к-т. Кетозы в эту р-цию не вступают и м. б. таким образом выделены из сложных смесей с альдозами. Определение " восстанавливающей способности" (т.е. окисление группы С=О) используют в многочисл. методиках анализа моносахаридов. При действии оснований возможна енолизация группы С=О, сопровождающаяся изменением конфигурации соседнего асим. центра или миграцией карбонила (см. Лобри де Брюйна - ванЭкенстейна реакция). В более жестких условиях происходят b-элиминирование заместителей и скелетные перегруппировки. При обработке к-тами в жестких условиях из пентоз образуется фурфурол, изгексоз - 5-гид-роксиметилфурфурол; конденсация последних с фенолами или ароматич. аминами с образованием окрашенных соед. лежит в основе разнообразных методик спектрофотометрич. определения моносахаридов. Из р-ций группы С=О с азотистыми соед. большое историч. значение имела конденсация моносахаридов с фенилгидрази-ном, приводящая к фенилозазонам. Широко используется р-цияальдоз с NH2OH с послед.ацетилированием:

Образующиесяацетилир. альдононитрилы удобны для анализа с использованием ГЖХ. Распад таких нитрилов под действием оснований служит для укорочения углеродной цепи моносахаридов на один атом, а присоединение HCN к карбонильной группе с послед.восстановлением нитрила в альдегид (Килиани - Фишера реакция) - для удлинения. Из р-ций групп ОН широко используются образование простых и сложных эфиров, ацеталей, замещение на др. функцией, группировки, окисление и т. д. Метиловые эфиры (весьма прочные соед.) служат для постоянной защиты групп ОН в структурном анализе олиго- и полисахаридов. Бензиловые эфиры применяют для временной защиты групп ОН, поскольку эти группы легко удаляются гидрогено-лизом. Трифенилметиловые (тритиловые) эфиры удобны для избират. замещения первичных групп ОН в присут. вторичных. Ацетилирование широко применяют для временной неизбират. защиты всех групп ОН в молекуле моносахаридов, тогда как бензоилирование чаще используют для избират. замещения (первичные группы ОН реагируют легче вторичных, экваториальные легче аксильных). Омыление эфиров, образованных орг. к-тами, легко осуществляется обработкой метилатомNa в метаноле и приводит к исходным моносахаридам. Напротив, эфиры сульфокислот (тозилаты, мезилаты и трифлаты) применяют для активации соответствующей группы ОН при нуклеоф. замещении, в т.ч. с обращением конфигурации. Это позволяет осуществлять эпимеризацию (напр., при действии бензоатаNa) у к.-л. атома С (т.е. переход от одного моносахарида к другому), замещение группы ОН на атом галогена, на др. функц. группы (синтез амино- и тиосахаров), получать внутримол. простые эфиры (ангид-росахара), ненасыщенные производные моносахаридов и т.д. С альдегидами и кетонами моносахариды образуют циклич. ацетали, строение к-рых определяется природой исходного моносахарида и реагента (с альдегидами предпочтительно образуются шес-тичленные циклы, с кетонами -пятичленные); р-ция может сопровождаться таутомернымипревращ. (знак ~ показывает, что моносахарид может иметь a- или b-конфигурацию), напр.:

Ацеталиустойчивы в щелочных и нейтральных средах; в присут. к-т гидролизуются, причем в ряде случаев возможно избират. удаление одной из двух присутствующих группировок, напр.:

Окисление защищенных моносахаридов, содержащих своб. первичную группу ОН, применяют для получения уроновых к-т, а содержащих своб. вторичную группу ОН-для получения карбонильных производных, широко используемых как про-межут. соед. в синтезе моносахаридов с новыми функц. группами, для разветвления углеродной цепи и для обращения конфигурации асим. центра при послед.восстановлении. Для анализа моносахаридов применяют специфич. окисление их йодной к-той и ее солями-т. наз. периодатное окисление (см. Малапрада реакция). Гидроксил у аномерного атома С (его называют аномер-ным, гликозидным, или полуацетальным) значительно отличается от прочих групп ОН повыш. склонностью к р-циямнуклеоф. замещения. Его обмен на остатки спиртов приводит к образованию гликозидов. Если спиртовой компонентой гликозида (агликоном) служит др. молекула моносахарида, образуются олигосахариды и полисахариды. При кипячении моносахаридов с большим избытком низшего спирта в присут. к-т (метод Фишера) образуется смесь изомерных гликозидов, соответствующих разным таутомерным формам моносахаридов:

Глюкоза

Глюкоза принадлежит к классу альдегидоспиртов — соединений, содержащих гидроксильные и альдегидные группы. В молекуле глюкозы пять гидроксильных групп и одна альдегидная. Наличие этих группы в глюкозе можно доказать с помощью реакции " серебряного зеркала".
Формулу глюкозы обычно приводят в сокращённом виде:


*Названия многих сахаров оканчиваются на " -иза"
Такая запись подразумевает не только глюкозу, но и семь изомерных сахароваллозу, альтрозу, маннозу, гулозу, идозу, галактозу, талозу, отличающихся пространственным расположением ОН -групп и атомов водорода при различных атомах углерода.
С учётом расположения групп в пространстве формулу глюкозы правильнее изображать.
Глюкоза (а также любой другой из семи изомерных ей сахаров) может существовать в виде двух изомеров, молекулы которых являются зеркальным отображением друг-друга.
Наличие глюкозы в каком-либо растворе можно проверить с помощью растворимой соли меди:
В щелочной среде соли меди (II-валентной) образуют с глюкозой ярко окрашенные комплексы (рисунок слева 1). При нагревании эти комплексы разрушаются: глюкоза восстанавливает медь до жёлтого гидроксида меди (I-валентной) CuОН, который превращается в красный оксид Сu2О (рисунки слева 2 и 3).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал