Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Термодинамические основы теории нагнетателей.
6.2. Термодинамические основы процессов сжатия. Первый закон термодинамики утверждает возможность превращения тепла в механическую работу, а работу – в теплоту, а также строгую эквивалентность этого превращения. Согласно этому закону, количество тепла Строго рассуждая, нельзя говорить о превращении одного «вида энергии» в другой. Энергия не «превращается», а превращаются одни формы движения материи в другие, а энергия как мера движения остается постоянной. Когда в технике говорят о превращении одного вида энергии в другой, то под этим понимают превращение одной формы движения материи в другую. Сущность второго закона термодинамики заключается в утверждении, что невозможна такая машина, которая производила бы работу только за счет охлаждения нагревателя без каких-либо других изменений в окружающих телах (без нагревания охладителя, т.е. без отдачи ему части тепла, которое в двигателе не может быть превращено в работу). Таким образом установлено, что для работы тепловой машины необходим отвод тепла в цикле. А так как отвод тепла возможен только при наличии разности температур между двумя телами, то, следовательно, для работы теплового двигателя надо иметь два тела: одно горячее с температурой Т1, а другое холодное е температурой Т2, к которому тепло отводилось бы в конце процесса расширения. На основании этих рассуждений можно сделать выводы: - необходимо наличие двух источников тепла: нагреватель - часть тепла - все тепло, заключающееся в газе, не может быть превращено в работу; - тепловой двигатель не может иметь КПД, равный 1. Коэффициент полезного действия действительных двигателей всегда меньше, чем термический КПД.
6.2. Изображение процессов сжатия в диаграммах состояния. Рассмотрим процесс сжатия рабочего тела компрессором. По способу сжатия газа компрессоры подразделяются на две группы. К первой группе относятся объемные компрессоры (поршневые, ротационные и др.), а ко второй - центробежные (турбинные). Несмотря на конструктивные различия термодинамика процессов, протекающих в обеих группах компрессоров, одинакова. Поэтому для анализа процессов, протекающих в машинах для сжатия газов, ниже будет рассмотрена работа поршневого компрессора, как наиболее простого по конструкции.
сжатие газа до определенного давления, при котором открывается нагнетательный клапан и производится нагнетание газа в резервуар. Компрессор называется идеальным, если сжатый в цилиндре газ полностью, без остатка, выталкивается поршнем; отсутствуют потери энергии в клапанах; отсутствуют утечки и перетечки газа через неплотности; отсутствуют силы трения поршня о цилиндр. Теоретическая индикаторная диаграмма идеального поршневого компрессора показана на рис. 2.1. На диаграмме линия 4 - 1 - называется линией всасывания; 1 - 2 - процесс сжатия по изотерме; 2 - 3 - линия нагнетания; 3 -4 -Условная линия, замыкающая цикл. Следует отметить, что линии всасывания 4 - 1 и нагнетания 2 - 3 не изображают термодинамические процессы, т.к. состояние рабочего тела здесь не меняется, а меняется лишь его количество. Термодинамический расчет компрессора выполняется с целью определения работы, затрачиваемой на сжатие, что в свою очередь дает возможность определить мощность приводного двигателя. Термодинамический расчет компрессора выполняется с целью определения работы, затрачиваемой на сжатие, что в свою очередь дает возможность определить мощность приводного двигателя. При всасывании газа (процесс 4 – 1) производится работа:
Работа, затраченная сжатие газа в процессе 1 – 2, определяется:
Работа, совершаемая над сжатым газом в процессе выталкивания этого газа из цилиндра (процесс 2 – 3) определяется:
Так как в процессе 3 – 4 изменение объема не происходит,
Удельная работа
где
Применяя для величины
интеграл правой части уравнения 2.1 можно записать следующим образом:
Подставляя в уравнение 2.1, получим
Ввиду того, что работа Для обеспечения изотермического сжатия необходимо постоянно отводить тепло от компрессора. С этой целью в стенках цилиндра компрессора делаются полости, через которые прокачивается охлаждающая жидкость.
6.3. Влияние вредного объема насоса. Вредным объемом называется некоторый свободный объем Таким образом, отличие действительной индикаторной диаграммы одноступенчатого компрессора от теоретической (рис. 2.1) заключается в наличии вредного объема в реальном компрессоре, а также наличием потерь на дросселирование во всасывающем и нагнетательном клапанах. Вследствие этого всасывание новой порции газа в цилиндр происходит при давлении, меньшем Вредное пространство уменьшает количество всасываемого газа и, следовательно, уменьшает производительность компрессора. Степень использования рабочего объема цилиндра оценивается объемным КПД компрессора:
|