Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Двойные интегралы
Основные понятия и определения Пусть в замкнутой области плоскости задана непрерывная функция .Разобьём область на n «элементарных областей» , площади которых обозначим через , а диаметры (наибольшее расстояние между точками области) через . В каждой области выберем произвольную точку , умножим значение функции в этой точки на и составим сумму всех таких произведений: Эта сумма называется функции в области . Если существует предел интегральной суммы, не зависящий от способа разбиения области на части и выбора точек в них, то он называется двойным интегралом от функции по области и обозначается
Таким образом, двойной интеграл определяется равенством
В этом случае функция называетсяинтегрируемой в области ; - область интегрирования; и - переменные интегрирования; или - элемент площади.
|