![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Уравнения электромагнитного поля
Основой математического описания электромагнитных полей являются уравнения Максвелла. Он вывел их с помощью аппарата векторного анализа, показав, что переменные электрическое и магнитное поля находятся в неразрывной взаимосвязи, совокупность которых представляет собой единое электромагнитное поле. Основными векторами, характеризующими электромагнитное поле, являются индукция Вектор магнитной напряженности
В соответствии, с которым вихрь магнитного поля создается полным током, определяемым плотностью тока проводимости Второе уравнение Максвелла отражает закон электромагнитной индукции, открытый впервые в 1831 году Фарадеем
Это уравнение говорит, что любое изменение индукции магнитного поля приводит к возникновению вихревого электрического поля с электрической напряженностью Ленц в 1832 году вслед за открытием Фарадея показал, что под действием электрической напряженности Третье уравнение Максвелла – это уравнение непрерывности
означающее, что нет истоков магнитного поля, нет магнитных зарядов, что линии магнитного поля являются замкнутыми. Это уравнение является математической формулировкой взглядов Фарадея, поддержанных Максвеллом и заключающихся в том, что линии магнитного поля всегда замкнуты или, по крайней мере, не имеют ни начала, ни конца.
|