![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Механические системы для удаления зубных отложений
Применение колебаний звуковой и ультразвуковой частоты для удаления зубных отложений началось в 50-е годы XX века. Первые автоматические скейлеры появились в 1956 году и были предназначены для пародон-тологии. Современные системы для механического удаления минерализованных зубных отложений подразделяются на звуковые и ультразвуковые. Звуковые системы представлены пневматическими скейлерами. Эти инструменты работают при помощи сжатого воздуха, который подается от турбины стоматологической установки. Частота возникающих при этом колебаний не достигает ультразвукового диапазона и составляет около 10 000 колебаний в секунду (Titan-S Sonic Sealer, Micro-MegaAir Sealer, KaVo SONICflex LUX). Траектория движения рабочего кончика орбитальная с амплитудой до 1, 5 мм. В результате колебаний рабочей части разрушаются плотно прикрепленные к поверхности зуба отложения. Этому процессу способствует и направленная на поверхность обрабатываемого зуба струя воды. При отсутствии охлаждения могут возникать термические повреждения твердых тканей зубов и окружающих их мягких тканей. Относительно невысокая мощность колебаний предохраняет поверхность корня от травмирования инструментом. Скейлеры, генерирующие колебания ультразвуковой частоты, преобразуют электрический ток в микроскопические вибрационные колебания частотой 25 000—50 000 Гц. В этих системах механический компонент дополняется ирригацией, кавитационным эффектом и акустической турбулентностью. Ультразвуковые скейлеры могут быть магнитострикционны-ми или пьезоэлектрическими (пьезокерамическими). В магнитострикционных аппаратах железный или никелевый сердечник в катушке переменного тока приводится в продольное колебание с частотой 20 000—35 000 Гц. Рабочий кончик инструмента движется по эллипсоидной траектории. Эти системы требуют значительного охлаждения. Большое количество образующегося во время работы аэрозоля может затруднять обзор рабочего поля. В пьезоэлектрических аппаратах в поле переменного тока происходит деформация кварцевых кристаллов (колец). Возникающие при этом колебания передаются на рабочую часть прибора, обеспечивая его линейные движения с частотой 40 000—60 000 Гц. Линейные возвратно-поступа-
тельные движения рабочего кончика наиболее эффективны и безопасны, поскольку при правильном расположении наконечника они предотвращают " бьющие" движения на поверхности зуба. В приборах, генерирующих линейное движение, верхушка наконечника должна располагаться параллельно колебаниям прибора (рис. 119). Большинство таких систем производят сверхтонкое распыление жидкости на торце наконечника (рис. 120). К пьезоэлектрическим аппа- Рис. 119. Расположения и направление
Для охлаждения инструмента во время работы обычно используют воду или фармакологически активные вещества (например, хлоргексидин). Необходимость постоянного охлаждения существенно затрудняет использование ультразвуковых инструментов для обработки глубоких пародонтальных карманов. В результате колебаний, возникаю С поверхностью должен быть плотным, кой магнитостьикционного (А) и пьезо-Пациентам с имплантированными электрического (Б) скейлеров
|