![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Учет массы упругой системы при колебаниях.
Если колеблющаяся система, несущая груз Q, обладает довольно значительной распределенной массой (число степеней свободы, следовательно, велико), то упрощенные расчеты, будут иметь уже значительную погрешность. В этом случае дифференциальные уравнения движения составляются с учетом массы системы. При решении подобного рода задач удобнее исходить не из условий равновесия, а из закона сохранения энергии. Полагая, что количество энергии, сообщенное системе при выведении ее из положения равновесия и представляющее собой сумму кинетической и потенциальной энергии груза и упругой системы, при свободных колебаниях остается постоянным, получаем уравнение
Это уравнение показывает, что при колебаниях происходит непрерывный процесс преобразования энергии из одного вида в другой, не сопровождающийся какими-либо потерями энергии. Когда упругая система достигает одного из крайних положений, в котором скорость колебательного движения равна нулю, а следовательно, равна нулю и кинетическая энергия (T =0), потенциальная энергия груза и системы достигает наибольшего значения Заметим, что принцип, положенный в основу этого уравнения, применим лишь для систем с одной степенью свободы, так как закон сохранения энергии не учитывает обмена энергии, происходящего в системах с несколькими степенями свободы. Таким образом, решение задачи о колебаниях системы с большим числом степеней свободы здесь сводится к простейшей задаче и мы сможем приближенно найти лишь одну (первую) частоту свободных колебаний. Рассмотрим теперь некоторые примеры использования исходного уравнения. В качестве первого примера исследуем колебания груза Q, подвешенного к нижнему концу призматического стержня длиной l, площадью поперечного сечения F и удельным весом
Рис.4. Расчетная схема колебаний подвешенного груза
Потенциальная энергия системы по сравнению с положением равновесия изменится на Потенциальную энергию груза Q в начальный момент обозначим через Таким образом, В момент t, когда груз переместится на расстояние х и стержень получит такую же дополнительную деформацию х, потенциальная энергия груза уменьшится на Qx, а сила упругого сопротивления стержня и статическая деформация его увеличатся в отношении
Кинетическая энергия системы складывается из кинетической энергии груза Предположим, что при колебаниях перемещения всех сечений стержня по отношению к закрепленному концу меняются по тому же закону, что и при статическом растяжении, т. е. пропорционально расстоянию от закрепленного сечения. Таким образом, если нижнее сечение стержня переместилось на величину х, то сечение, отстоящее от места защемления на Кинетическая энергия всего стержня будет равна сумме величин Таким образом, живая сила стержня равна живой силе груза, имеющего массу Подставляя Т и выражение U (4) в уравнение (5), дифференцируем последнее по t и находим: или Здесь Лекция № 49. Расчет динамического коэффициента при ударной нагрузке.
|