Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Значение биологии для сельского и промыслового хозяйства, медицины 6 страница






С большим успехом использовали англ, учёные М. Перуц, Дж. Кендрю и их сотрудники рентгеноструктурный анализ для выяснения строения миоглобина и гемоглобина. В 1956-67 полностью была определена структура лизоцима англ. биохимиком Д. Филлипсом и др. Не менее значительны успехи, достигнутые в анализе сложных белков, нуклеопротеидов, нуклеиновых кислот и нуклеотидов.

Триумфом Б., молекулярной биология и генетики явились исследования, показавшие роль нуклеиновых кислот в биосинтезе белков и установившие предопределяющее влияние нуклеиновых кислот на строение и свойства синтезируемых в клетке белков. Этими работами были выяснены биохимич. основы передачи признаков по наследству от поколения к поколению. Трудно переоценить также значение исследований, определивших последовательность нуклеотидов в составе транспортных рибонуклеиновых кислот и разработку методов органич. синтеза полинуклеотидов. Особенно плодотворно в названных областях работают И. Бьюкенен, Э. Чаргафф, И. Дэвидсон, Д.Дейвис, А. Корнберг, С. Очоа, Дж. Уотсон, М. Уилкинс и др. (США), Ф. Крик, Ф. Сангер (Великобритания), Ф. Жакоб, Ж. Моно (Франция), А. Н. Белозерский, А. С. Спирин, В. А. Энгельгардт, А. А. Баев (СССР) и мн. др.

Каучные учреждения, общества и периодич. издания. Запросы к Б. со стороны смежных науч. дисциплин - медицины со всеми её разветвлениями, с. х-ва (растениеводства, животноводства), пищ. пром-сти, теоретич. и прикладной биилогии, почвоведения, гидробиологии и океанологии, становятся всё шире. Каждое из направлений Б. располагает в СССР и за рубежом сетью специализированных ин-тов и лабораторий. Науч. работа по Б. в СССР проводится в центральных н.-и. ин-тах, находящихся в системе: АН СССР - Ин-т биохимии им. А. Н. Боха, Ин-т эволюционной физиологии и биохимии, Ин-т физиологии ранений, Ин-т молекулярной биологии, Ин-т химия природных соединений; республиканских академий - ин-ты биохимии УССР, Ар;.. ССР, Узб. ССР, Лптов. ССР; отраслевых академий: Ин-т биологич. и мед. химии АМН СССР, отдел биохимии в Ин-те эксперимент, медицины АМН СССР, Ин-т эксперимент, эндокринологии и химии гормонов АМН СССР, Ин-т питания АМН СССР; в ин-тах ВАСХНИЛ и ряда министерств (здравоохранения, с. х-ва, пищевой пром-сти и др.). Работы по Б. представлены в лаборатории биоорганической химии МГУ, на многочисл. кафедрах Б. вузов. Проблемами Б. занимаются в центральных и отраслевых институтах, работающих в области ботаники, физиологии, патологии, в ин-тах экспериментальной и клинич. медицины, ин-тах пищ. пром-сти, ин-тах физкультуры и мн. др. Осн. специалистов-биохимиков за рубежом и в СССР готовят ун-ты, их химич. и биологич. ф-ты, имеющие в своём составе специальные кафедры. Биохимиков более узкого профиля готовят в медицинских, технологич., с.-х. и др. вузах.

В большинстве стран существуют науч. биохимические общества, объединённые в Европейскую федерацию биохимиков (FEBS - Federation of European Biochemical Societies) и в Междунар. биохимич. союз (IUB - International Union of Biochemistry). Эти организации собирают симпозиумы, конференции, а также конгрессы - ежегодные по Европ. федерации (первый проходил в 1964) и раз в 3 года по Междунар. биохимич. союзу (первый состоялся в 1949; особенно популярными и многолюдными конгрессы стали начиная с 5-го, состоявшегося в 1961 в Москве). В СССР Всесоюзное биохимич. об-во с многочисленными республиканскими и городскими отделениями было организовано в 1958. Оно объединяет ок. 6, 5 тыс. членов. Фактически число биохимиков в СССР значительно больше.

Количество периодич. изданий, в к-рых публикуются работы по Б., очень велико и продолжает увеличиваться с каждым годом. Из зарубежных и международных журналов наиболее известны: " Journal of Biological Chemistry" (Bait., 1905-), " Biochemistry" (Wash., 1964-), " Archives of Biochemistry and Biophysics" (N. Y., 1942-), " Biochemical Journal" (L., 1906-), " Phytochemistry" (Oxf.-N. Y., 1962-), " Molecular Biology" (издаётся в Англии - журнал международный), " Bulletin de la Societe de Chimie Biologique" (P., 1914-), " Enzymologia" (Haaga, 1936-), " Giornale di Biochimica" (Rome, 1955-), " Acta Biological et Medica Germanica" (Lpz., 1959-), " Hoppe Seyler's Zeitschrift fur physiologische Chemie" (Berlin, 1877-), " Journal of Biochemistry" (Tokyo, 1922-). Популярны ежегодники: " Annual Review of Biochemistry" (Stanford, 1932-), " Advances in Enzymology and Related Subjects of Biochemistry" (N. Y., 1945-), " Advances in Protein Chemistry" (N. Y., 1945-), " Advances in Enzyme Regulation" (Oxf., 1963-), " Advances in Molecular Biology" и др. В СССР экспериментальные работы по Б. печатаются в журналах: " Биохимия" (М., 1936-), " Журнал эволюционной биохимии и физиологии" (М., 1965-), " Молекулярная биология" (М., 1967-), " Вопросы медицинской химии" (М., 1955-), " Украинский биохимический журнал" (К., 1926-), " Прикладная биохимия и микробиология" (М., 1965-), " Доклады АН СССР" (М., 1933-), " Бюллетень экспериментальной биологии и медицины" (М., 1936-), " Известия АН СССР. Серия биологии и медицины" (М., 1936-), " Известия АН СССР. Серия химическая" (М., 1936-), " Научные доклады высшей школы. Серия биологические науки" (М., 1958-) и в некоторых др.

Обзорные работы по Б. печатаются в журнале " Успехи современной биологии" (М., 1932-), в ежегоднике " Успехи биологической химии" (т. 1-8, 1950-67), издаваемом Всесоюзным биохимическим обществом, в журн. " Успехи химии" (М., 1932-), " Реферативный журнал. Химия. Биологическая химия" (М., 1955-), в журн. Всесоюзного общества им. Менделеева. Часто выходят в свет труды биохимич. ин-тов.

Лит.: Руководства: Макеев И. А., Гулевич В. С., Б р о у д е Л. М., Курс биологической химии, М., 1947; К р е т о в и ч В. Л., Основы биохимии растений, 4 изд., М., 1964; 3 б а р с к и й Б. И., Иванов И. И., М а р д а ш е в С. Р., Биологическая химия, 4 изд., М., 1965; Фердман Д. Л., Биохимия, 3 изд., М., 1966.

История: Прянишников Д., Избр. соч., т. 1, М., 1951, с. 5 -19; Гулевич В. С., Избранные труды, М., 1954, с. 5-21; Парнас Я. О., Избранные труды, М., 1960, с. 5 - 10; Толкачевская Н. Ф., Развитие биохимии животных, М., 1963; Джуа М., История химии, пер. с итал., М., 1966; Развитие биологии в СССР, М., 1967; Кретович В. Л., Введение в энзимологию, М., 1967; Биохимия растений, пер. с англ., М., 1968; Lieben F., Geschichte der physiologischen Chemie, Lpz.- W., 1935.

Монографии: Энгельгардт В. А., Некоторые проблемы современной биохимии, М., 1959; его же, Пути химии в познании явлений жизни, М., 1965; Северин С. Е., Биохимические основы жизни, М., 1961; С п и р и н А. С., Информационная РНК и биосинтез белков, М., 1962; Скулачев В. П., Соотношение окисления и фосфорилирования в дыхательной цепи, М., 1962; Ферменты, под ред. А. Е. Браунштейна, М., 1964; Владимиров Г. Е., Пантелеева Н. С., Функциональная биохимия, Л., 1965; И н г р э м В., Биосинтез макромолекул, пер. с англ., М., 1966; Рэкер Э., Биоэнергетические механизмы, пер. с англ., М., 1967; Спирин А. С., Гаврилова Л. П., Рибосома, М., 1968. С. Е. Северин.

" БИОХИМИЯ", журнал, издаваемый АН СССР в Москве. Осн. в 1936 А. Н. Бахом. Выходит 1 раз в 2 мес. В журнале публикуются эксперимент, работы по общей биохимии, энзимологии (учение о ферментах), обмену веществ в растениях, животных и микроорганизмах, по биохимии витаминов, гормонов и др. природных физиологически активных соединений, а также по биохимич. основам технологии растительного и животного сырья. Тираж ок. 4 тыс. экз. (1970). О других биохимических журналах см. Биохимия.

БИОХОР (от био... и греч. chora -пространство), подразделение биосферы, представляющее собой группу сходных биотопов. Б. объединяются в биоциклы. суша, море и внутр. водоёмы.

БИОЦЕНОЗ (от био... и греч. koinos -общий), совокупность растений, животных, микроорганизмов, населяющих участок суши или водоёма и характеризующихся определёнными отношениями как между собой, так и с абиотическими факторами среды (см. Биотоп).

Термин " Б." был предложен нем. биологом К. Мёбиусом (1877). Б.- комплекс организмов биогеоценоза, формирующийся в результате борьбы за существование, естественного отбора и других факторов эволюции. По участию в биогенном круговороте веществ в Б. различают три группы организмов. 1) Продуценты (производители) - автотрофные организмы, создающие органич. вещества из неорганических; осн. продуценты во всех Б.- зелёные растения (см. Фотосинтез). Деятельность продуцентов определяет исходное накопление органич. веществ в Б. (см. Биомасса, Биологическая продуктивность). 2) Консументы (потребители)- гетеротрофные организмы, питающиеся за счёт автотрофных. Консументы 1-го порядка - растительноядные животные, а также паразитич. бактерии, грибы и др. бесхлорофильные растения, развивающиеся за счёт живых растений. Консументы 2-го порядка - хищники и паразиты растительноядных организмов. Бывают консументы 3-го и 4-го порядков (сверхпаразиты, суперпаразиты и т. п.), но всего в цепях питания не более 5 звеньев. На каждом последующем трофич. уровне кол-во биомассы резко снижается. Деятельность консументов способствует превращениям и перемещениям органич. веществ в Б., частичной их минерализации, а также рассеянию энергии, накопленной продуцентами. 3) Редуценты (восстановители) - животные, питающиеся разлагающимися остатками организмов (сапрофаги), и особенно непаразитирующие гетеротрофные микроорганизмы - способствуют минерализации органич. веществ, их переходу в усвояемое продуцентами состояние.

Взаимосвязи организмов в Б. многообразны. Кроме трофич. связей, определяющих цепи питания (иногда очень своеобразные - см. Паразитизм, Симбиоз), существуют связи, основанные на том, что одни организмы становятся субстратом для других (топические связи), создают необходимый микроклимат и т. п. Часто можно проследить в Б. группы видов, связанные с определённым видом и целиком зависящие от последнего (кон-сорции).

Для Б. характерно разделение на более мелкие подчинённые единицы - мероценозы, т. е. закономерно слагающиеся комплексы, зависящие от Б. в целом (напр., комплекс обитателей гниющих дубовых пней в дубраве). Если энергетич. источником Б. служат не автотрофы, а животные (напр., летучие мыши в Б. пещер), то такие Б. зависят от притока энергии извне и являются неполноценными, представляя в сущности мероценозы. В Б. можно выделить и др. подчинённые группировки организмов, напр, синузии. Для Б. также характерно разделение на группировки организмов по вертикали (ярусы Б.). В годовом цикле в Б. изменяются численность, стадии развития и активность отдельных видов, создаются закономерные сезонные аспекты Б.

Б.- диалектически развивающееся единство, меняющееся в результате деятельности входящих в него компонентов, вследствие чего происходят закономерные изменение и смена Б. (сукцессии), к-рые могут приводить к восстановлению резко нарушенных Б. (напр., леса после пожара и т. п.). Различают насыщенные и ненасыщенные Б. В насыщенном Б. все экологические ниши (см. Ниша экологическая) заняты и вселение нового вида невозможно без уничтожения или последующего вытеснения к.-л. компонента Б. Ненасыщенные Б. характеризуются возможностью вселения в них новых видов без уничтожения др. компонентов. Можно различать первичные Б., сложившиеся без воздействия человека (целинная степь, девственный лес), и вторичные, изменённые деятельностью человека (леса, выросшие на месте сведённых, население водохранилищ). Особую категорию представляют агробиоценозы, где комплексы осн. компонентов Б. сознательно регулируются человеком. Между первичными Б. и агробиоценозами имеется вся гамма переходов. Изучение Б. важно для рационального освоения земель и водных пространств, т. к. только правильное понимание регулятивных процессов в Б. позволяет человеку изымать часть продукции Б. без его нарушения и уничтожения.

Лит.: Кашкаров Д. Н., Основы экологии животных, 2 изд., Л., 1945; Б е к л е м и ш е в В. Н., О классификации биоценологических (симфизиологических) связей, " Бюлл. Московского общества испытателей природы", 1951, т. 56, в. 5; Гиляров М. С., Вид, популяция и биоценоз, " Зоологический журнал", 1954, т. 33, в. 4; А р н о л ь д и К. В. и Л. В., О биоценозе, там же, 1963, т. 42, в. 2; Наумов Н. П., Экология животных, 2 изд., М., 1963; Основы лесной биогеоценологии, под ред. В. Н. Сукачева и Н. В. Дылиса, М., 1964; М а к ф е д ь е н Э., Экология животных, пер. с англ., М., 1965; Одум Е., Экология, М., 1968; Д ю в и н ь о П. и Танг М., Биосфера и место в ней человека, пер. с франц., М., 1968; Tischler W., Synokologie der Landtiere, Stuttg., 1955; Balogh J., Lebensgemeinschaften der Landtiere, Bdpst - В., 1958; Kormondy E. J., Readings in ecology, L., 1965. М. С. Гиляров.

БИОЦЕНОЛОГИЯ (от биоценоз я...логия), наука, изучающая растительные и животные сообщества в их совокупности, т. е. биоценозы, их строение, развитие, распределение в пространстве и во времени, происхождение. Изучение сообществ организмов в их взаимодействии с неживой природой - предмет биогеоценологии.

БИОЦЕНОМЕТР (от биоценоз и ...метр), прибор для количеств, учёта наземных насекомых и др. беспозвоночных, применяемый при экологич. исследованиях. Б. представляет собой цилиндр или куб без дна, стенки и верх к-рого затянуты мелкой сеткой или марлей. Применение Б.: пробная площадка размером 0, 25-1 м2 быстро (чтобы не ускользнули животные) накрывается Б. Пойманных животных извлекают из Б., умерщвляют, подсчитывают по группам и видам, взвешивают и определяют относит, численность их и массу на единицу площади данного биотопа.

БИОЦИКЛЫ, или жизненные области, три самых крупных подразделения биосферы: суша, море и внутр. водоёмы. Каждый Б. подразделяется на биохоры, включающие значит, число биотопов. Напр., биотопы песчаных, глинистых и каменистых пустынь объединяются в биохор пустынь, к-рый вместе с биохорами лесов, степей и др. составляет Б. суши. Термин биологические циклы употребляется в экологии в ином значении.

Лит.: Гептнер В. Г., Общая зоогеография, М. -Л., 1936; Наумов Н. П., Экология животных, М., 1955; Вернадский В. И., Химическое строение биосферы Земли и её окружения, М., 1965: Ecological animal geography, N. Y., 1951. И. А. Шилов.

БИОЭЛЕКТРИЧЕСКИЕ ПОТЕНЦИАЛЫ, электрические потенциалы, возникающие в тканях и отдельных клетках человека, животных и растений, важнейшие компоненты процессов возбуждения и торможения. Исследование Б. п. имеет большое значение для понимания физико-химич. и физиологич. процессов в живых системах и применяется в клинике с диагностич. целью (электрокардиография, электроэнцефалография, электромиография и др.).

Первые данные о существовании Б. п. (" животного электричества") были получены в 3-й четв. 18 в. при изучении природы " удара", наносимого нек-рыми рыбами с электрическими органами при защите или нападении. К этому же времени относится начало исследований итал. физиолога и врача Л. Гальвани, заложивших основу учения о Б. п. Многолетний науч. спор (1791-97) между Л. Гальвани и физиком А. Вольта о природе " животного электричества" завершился двумя крупными открытиями: были получены факты о существовании биоэлектрических явлений в живых тканях и открыт новый принцип получения электрич. тока с помощью разнородных металлов - создан гальванич. элемент (вольтов столб). Правильная оценка наблюдений Гальвани стала возможной лишь после применения достаточно чувствит. электроизмерит. приборов - гальванометров. Первые такие исследования были проведены итал. физиком К. Маттеуччи (1837). Систематич. изучение Б. п. было начато нем. физиологом Э. Дюбуа-Реймоном (1848), к-рый доказал существование Б. п. в нервах и мышцах в покое и при возбуждении. Но ему не удалось (в силу большой инерционности гальванометра) зарегистрировать быстрые, длящиеся тысячные доли сек колебания Б. п. при проведении импульсов вдоль нервов и мышц. В 1886 нем. физиолог Ю. Бернштейн проанализировал форму потенциала действия; франц. учёный Э. Ж. Марей (1875) применил для записи колебаний потенциалов бьющегося сердца капиллярный электрометр; рус. физиолог Н. Е. Введенский использовал (1883) для прослушивания ритмич. разрядов импульсов в нерве и мышце телефон, а гол л. физиолог В. Эйнтховен (1903) ввёл в эксперимент и клинич. практику струнный гальванометр - высокочувствит. и малоинерционный прибор для регистрации электрич. токов в тканях. Значит, вклад в изучение Б. п. внесли рус. физиологи: В. В. Правдич-Немин-ский (1913-21) впервые зарегистрировал электроэнцефалограмму, А. Ф. Самойлов (1929) исследовал природу нервно-мышечной передачи возбуждения, а Д. С. Воронцов (1932) открыл следовые колебания Б. п., сопровождающие потенциал действия в нервных волокнах. Дальнейший прогресс в изучении Б. п. был тесно связан с успехами электроники, позволившими применить в физиологич. эксперименте электронные усилители и осциллографы (работы амер. физиологов Г. Бишопа, Дж. Эрлангера и Г. Гассера в 30-40-х гг. 20в.). Изучение Б.п. в отдельных клетках и волокнах стало возможным с разработкой микроэлектродной техники. Важное значение для выяснения механизмов генерации Б. п. имело использование гигантских нервных волокон головоногих моллюсков, гл. обр. кальмара. Диаметр этих волокон в 50 -100 раз больше, чем у позвоночных животных, он достигает 0, 5-1 мм, что позволяет вводить внутрь волокна микроэлектроды, инъецировать в протоплазму различные вещества и т. п. Изучение ионной проницаемости мембраны гигантских нервных волокон позволило англ, физиологам А. Ходжкину, А. Хаксли и Б. Катцу (1947-52) сформулировать современную мембранную теорию возбуждения.

Различают следующие осн. виды Б. п. нервных и мышечных клеток: потенциал покоя, потенциал действия, возбуждающие и тормозные постсинаптич. потенциалы, генераторные потенциалы.

Потенциал покоя (ПП, мембранный потенциал покоя). У живых клеток в покое между внутр. содержимым клетки и наружным раствором существует разность потенциалов (ПП) порядка 60-90 же, к-рая локализована на поверхностной мембране.

[ris]

Рис. 2. Потенциалы действия, зарегистрированные с помощью внутриклеточных микроэлектродов: а - гигантского аксона кальмара; 6 - скелетного мышечного волокна; в - волокна мышцы сердца собаки; 1 - восходящая фаза ПД; 2 - нисходящая фаза; 3 - следовая гиперполяризация (а) и следовая деполяризация (б).

Внутр. сторона мембраны заряжена электроотрицательно по отношению к наружной (рис. 1). ПП обусловлен избират. проницаемостью покоящейся мембраны для ионов К+ (Ю. Бернштейн, 1902, 1912; А. Ходжкин и Б. Катц, 1947). Концентрация К+ в протоплазме примерно в 50 раз выше, чем во внеклеточной жидкости, поэтому, диффундируя из клетки, ионы выносят на наружную сторону мембраны положительные заряды, при этом внутр. сторона мембраны, практически не проницаемой для крупных органич. анионов, приобретает отрицат. потенциал. Поскольку проницаемость мембраны в покое для Na+ примерно в 100 раз ниже, чем для К+, диффузия натрия из внеклеточной жидкости (где он является осн. катионом) в протоплазму мала и лишь незначительно снижает ПП, обусловленный ионами К+. В скелетных мышечных волокнах в возникновении потенциала покоя важную роль играют также ионы С1-, диффундирующие внутрь клетки. Следствием ПП является ток покоя, регистрируемый между повреждённым и интактным участками нерва или мышцы при приложении отводящих электродов. Мембраны нервных и мышечных клеток (волокон) способны изменять ионную проницаемость в ответ на сдвиги мембранного потенциала. При увеличении ПП (гиперполяризация мембраны) проницаемость поверхностных клеточных мембран для Na+ и К+ падает, а при уменьшении ПП (деполяризация) она возрастает, причём скорость изменений проницаемости для Na+ значительно превышает скорость увеличения проницаемости мембраны для К+.

[ris]

Рис. 1. Схема измерений мембранного потенциала покоя с помощью внутриклеточного стеклянного микроэлектрода (М). Второй электрод (И) помещён в омывающую клетку жидкость.

Потенциал действия (ПД). Все раздражители, действующие на клетку, вызывают в первую очередь снижение ПП; когда оно достигает критич. значения (порога), возникает активный распространяющийся ответ - ПД (рис. 2). Во время восходящей фазы ПД кратковременно извращается потенциал на мембране: её внутр. сторона, заряжённая в покое электроотрицательно, приобретает в это время положит, потенциал. Достигнув вершины, ПД начинает падать (нисходящая фаза ПД), и потенциал на мембране возвращается к уровню, близкому к исходному, - ПП. Полное восстановление ПП происходит только после окончания следовых колебаний потенциала - следовой деполяризации или гиперполяризации, длительность к-рых обычно значительно превосходит продолжительность пика ПД. Согласно мембранной теории, деполяризация мембраны, вызванная действием раздражителя, приводит к усилению потока Na+ внутрь клетки, что уменьшает отрицат. потенциал внутр. стороны мембраны - усиливает её деполяризацию, Это, в свою очередь, вызывает дальнейшее повышение проницаемости для Na+ и новое усиление деполяризации и т. д.
[ris]

Рис. 3. Изменения натриевой и калиевой проводимости мембраны нервного волокна во время генерации потенциала действия (I). Изменения проводимости пропорциональны изменениям проницаемости для Na+ (II) и К+ (III).

В результате такого взрывного кругового процесса, т. н. регенеративной деполяризации, происходит извращение мембранного потенциала, характерное для ПД. Повышение проницаемости для Na+ очень кратковременно и сменяется её падением (рис. 3), а следовательно, уменьшением потока Na+ внутрь клетки. Проницаемость для К+, в отличие от проницаемости для Na+, продолжает увеличиваться, что приводит к усилению потока К+ из клетки. В результате этих изменений ПД начинает падать, что ведёт к восстановлению ПП. Таков механизм генерации ПД в большинстве возбудимых тканей. Существуют, однако, клетки (мышечные волокна ракообразных, нервные клетки у ряда брюхоногих моллюсков, нек-рые растит, клетки), у к-рых восходящая фаза ПД обусловлена повышением проницаемости мембраны не для ионов Na+, а для ионов Са2+. Своеобразен также механизм генерации ПД в мышечных волокнах сердца, для к-рых характерно длительное плато на нисходящей фазе ПД (рис. 2, в). Неравенство концентраций ионов К+ и Na4+ (или Са2+) внутри и снаружи клетки (волокна) поддерживается специальным механизмом (т. н. " натриевым насосом"), выталкивающим ионы Na+ из клетки и нагнетающим ионы К+ в протоплазму, требующим затраты энергии, которая черпается клеткой в процессах обмена веществ.

Амплитуда ПД большинства нервных и мышечных волокон примерно одинакова: 110-120 мв. Длительность ПД варьирует в широких пределах: у теплокровных животных длительность ПД нервных волокон, наиболее быстро проводящих возбуждение, -0, 3-0, 4 мсек, у волокон же мышц сердца - 50-600 мсек. В растит, клетках пресноводной водоросли хара ПД продолжается ок. 20 сек. Характерной особенностью ПД, отличающей его от др. форм ответа клетки на раздражение, является то, что он подчиняется правилу " всё или ничего", т. е. возникает только при достижении раздражителем нек-рого порогового значения, и дальнейшее увеличение интенсивности раздражителя уже не сказывается ни на амплитуде, ни на продолжительности ПД, Потенциал действия - один из важнейших компонентов процесса возбуждения. В нервных волокнах он обеспечивает проведение возбуждения от чувствит. окончаний (рецепторов) к телу нервной клетки и от неё - к синаптическим окончаниям (см. Синапсы), расположенным на различных нервных, мышечных или железистых клетках. Поступая в эффекторные окончания, ПД вызывает выделение (секрецию) определённой порции специфич. хим. веществ, т. н. медиаторов, оказывающих возбуждающее или тормозящее влияние на соответств. клетки. В мышечных волокнах распространяющийся ПД вызывает цепь физико-химич. реакций, лежащих в основе процесса сокращения мышц. Проведение ПД вдоль нервных и мышечных волокон осуществляется т. н. локальными токами, или токами действия, возникающими между возбуждённым (деполяризованным) и соседними с ним покоящимися участками мембраны (см. Возбуждение). Токи действия регистрируются обычными внеклеточными электродами; при этом кривая имеет двухфазный характер: первая фаза соответствует приходу ПД под ближний электрод, вторая - под дальний электрод (рис. 4).

[ris]

Рис. 4. Регистрация распространения потенциала действия вдоль нервного волокна. А, Б - внеклеточные электроды; р - раздражающие электроды. Вверху - отклонение луча осциллографа под влиянием волны возбуждения; 1 - волна возбуждения под электродом А; 2 - под электродом Б.

Постсиваптические потенциалы (ПСП) возникают в участках мембраны нервных или мышечных клеток, непосредственно граничащих с синаптическими окончаниями. Они имеют амплитуду порядка нескольких мв и длительность 10-15 мсек. ПСП подразделяются на возбуждающие (ВПСП) и тормозные (ТПСП). ВПСП представляют собой местную деполяризацию постсинаптической мембраны, обусловленную действием соответствующего медиатора (например, ацетилхолина в нервно-мышечном соединении). При достижении ВПСП некоторого порогового (критического) значения в клетке возникает распространяющийся ПД (рис. 5, а, 6). ТПСП выражается местной гиперполяризацией мембраны, обусловленной действием тормозного медиатора (рис. 5, в). В отличие от ПД, амплитуда ПСП постепенно увеличивается с увеличением количества выделившегося из нервного окончания медиатора. ВПСП и ТПСП суммируются друг с другом при одновременном или последовательном поступлении нервных импульсов к окончаниям, расположенным на мембране одной и той же клетки.

[ris]

Рис. 5. Постсинаптические потенциалы: а - подпороговые ВПСП, возникающие в нервной клетке в ответ на раздражения соответствующих нервных волокон; б - ВПСП, достигший порогового значения, достаточного для возникновения ПД; в - ТПСП, вызванный раздражением тормозных нервных волокон.

Гевераторвые потенциалы возникают в мембране чувствит. нервных окончаний - рецепторов. Они внешне сходны с ВПСП - их амплитуда порядка нескольких мв и зависит от силы приложенного к рецептору раздражения (рис. 6). Когда генераторный потенциал достигает порогового (критического) значения, в соседнем участке мембраны нервного волокна возникает распространяющийся ПД. Ионный механизм генераторных потенциалов ещё недостаточно изучен. Наряду с перечисленными относительно быстро развивающимися Б. п., в нервных клетках, волокнах гладких мышц и нек-рых растит, клетках регистрируются также очень медленные колебания мембранного потенциала неизвестной природы, причём на гребне волны деполяризации мембраны часто возникают разряды импульсов.

[ris]

Рис. 6. Генераторные потенциалы; увеличение амплитуды при усилении раздражения рецептора (а - е). При достижении порогового значения (в) генераторный потенциал вызвал в чувствительном нервном волокне потенциал действия.

Все Б. п. могут быть зарегистрированы В точно измерены только с помощью внутриклеточных микроэлектродов, позволяющих отводить разности потенциалов между внутренней и наружной сторонами мембраны клетки. При отведении колебаний Б. п. от целых нервов, мышц или мозга с помощью поверхностных электродов регистрируется лишь суммарно потенциал множества синхронно или, чаще, асинхронно работающих клеток. Так, электромиограмма представляет собой результат сложения (интерференции) ПД множества скелетных мышечных волокон; электрокардиограмма - результирующая колебаний электрич. потенциалов мышечных волокон различных отделов сердца; электроэнцефалограмма -результат суммации гл. обр. ВПСП и ТПСП множества клеток различных слоев коры больших полушарий. Регистрация таких интерференционных электрограмм, хотя и не позволяет анализировать колебания Б. п. отдельных клеток, имеет важное значение для суждения о состоянии исследуемого органа в целом. В клинич. практике электромиограмму, электрокардиограмму и электроэнцефалограмму регистрируют с помощью электродов, расположенных на коже соответств. частей тела. Оценка данных, полученных этими методами, основана на сопоставлении изменений характера соответств. кривой с результатами клинич., физиологич. и патологоанатомич. исследований.

Лит.: физиология человека, М., 1966; Гальвэни Л. и Вольта А., Избр. работы о животном электричестве, М. - Л., 1937; Ходжкин А., Нервный импульс, пер. с англ., М., 1965; Э к к л с Д ж.. Физиология нервных клеток, пер. с англ., М., 1959; его же, физиология синапсов, М., 1966; К а т ц Б., Нерв, мышца и синапс, пер. с англ., М., 1968; ХодоровБ. И., Проблема возбудимости, Л., 1969. Б.И. Ходоров.

БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ, см. Биоэлектрические потенциалы.

БИОЭНЕРГЕТИКА, биологическая энергетика, изучает механизмы преобразования энергии в процессах жизнедеятельности организмов. Иначе говоря, Б. рассматривает явления жизнедеятельности в их энергетич. аспекте. Методы и подходы к изучаемым явлениям, применяемые в Б., - физико-химические, объекты и задачи - биологические. Т. о., Б. стоит на стыке этих наук и является частью молекулярной биологии, биофизики и биохимии.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал