Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Г. Г. Винберг. 3 страница






[ris]

Рис. 2. Конструкция гидроизоляции подземных сооружений: а - при одностороннем напоре воды (подвал здания); б -при двустороннем напоре воды (подземный канал); 1 - несущая конструкция; 2 - поверхностная гидроизоляция; 3 - бетонное основание; 4 - уплотнение деформационного шва; 5 - напорный фронт воды.

Монтируемая Г. выполняется из специально изготовленных элементов (металлич. и пластмассовые листы, профильные ленты), прикрепляемых к осн. сооружению монтажными связями. Применяется в особо сложных случаях. Совершенствование её идёт по пути использования стеклопластиков, жёсткого поливинилхлорида, индустриального изготовления сборных железобетонных изделий, покрытых в заводских условиях окрасочной или штукатурной Г.

Наиболее распространённый конструктивный вид Г. - поверхностные покрытия в сочетании с уплотнением деформационных или конструктивных швов и устройством сопряжений, обеспечивающих непрерывность всего напорного фронта сооружения. Поверхностные Г. конструируются таким образом, чтобы они прижимались напором воды к изолируемой несущей конструкции (рис. 2); разработаны также новые виды конструктивной Г., работающей " на отрыв".

[ris]

Рис. 3. Уплотнение деформационного шва здания ГЭС (поперечный разрез по зданию станции): 1 - вертикальная асфальтовая шпонка с электрообогревом; 2 - смотровой колодец; 3 - горизонтальная асфальтовая шпонка; 4 - заполнение шва холодной асфальтовой штукатуркой; 5 - полый шов; 6 - уплотнение железобетонным брусом; 7 - труба для подлива асфальтовой мастики.

Существ, значение в Г. сооружений имеют уплотнения деформационных швов (рис. 3); они устраиваются для придания швам водонепроницаемости и защиты их от засорения грунтом, льдом, плавающими телами. Помимо водонепроницаемости, уплотнения должны также обладать высокой деформатив-ной способностью, гибкостью, с тем чтобы они могли свободно следовать за деформациями сопрягаемых элементов или секций сооружения. Наиболее распространённые типы уплотнений - асфальтовые шпонки и прокладки, металлич. диафрагмы и компенсаторы, резиновые и пластмассовые диафрагмы, прокладки и погонажные герметики. Предусматривается также широкое применение битум-но-полямерных герметиков, стеклопластиков и стеклоэластиков, позволяющих создавать более простые и надёжные уплотнения.

Г., работающая " на о т-р ы в", выполняется в виде покрытий, наносимых на защищаемую конструкцию со стороны, обратной напору воды (рис. 4). Применяется гл. обр. при ремонте и восстановлении Г. сооружений (напр., путём оштукатуривания изнутри затопляемых подвалов зданий) и для Г. подземных сооружений, несущие конструкции к-рых бетонируются впритык к окружающему грунту или скальному основанию - туннели, опускные колодцы, подземные помещения большого заглубления (при антифильтрационной их защите). Для устройства Г. этого типа применяются гидроиэоляц. покрытия, допускающие анкеровку за осн. конструкцию (литая и монтируемая Г.) либо обладающие высокой адгезией к бетону при длит, воздействии воды (цементный торкрет, холодная асфальтовая и эпоксид-ная окрасочная Г.).

[ris]

Рис. 4. Поверхностная гидроизоляция, работающая " на отрыв": а - асфальтовая гидроизоляция; 6 - металлическая гидроизоляция: 1 - несущая конструкция; 2 - поверхностная гидроизоляция; 3 - защитное ограждение; 4 - стальные анкеры; 5 - напорный фронт воды; 6 - стальная обшивка.

Комплекс работ по устройству Г. включает: подготовку основания, устройство гидроизоляц. покрова и защитного ограждения, уплотнение деформац. швов и сопряжений Г. При выборе типа Г. отдают предпочтение таким покрытиям, к-рые, при равной надёжности и стоимости, позволяют комплексно механизировать гидроизоляц. работы, ликвидировать их сезонность. В СССР разработаны новые типы гидроизоляц. устройств, успешно разрешающие эти проблемы: асфальтовые штукатурные и полимерные окрасочные, пропиточные и монтируемые Г.

Лит.: Попченко С. H., Старицкий M. Г., Асфальтовые гидроизоляции бетонных и железобетонных сооружений. М, -Л., 1962; Hосков С. К., Устройство гидроизоляции в промышленном строительстве, M., 1963;.Строительные нормы и правила, ч. 3, раздел В, гл. 9. Гидроизоляция и па-роизоляция, M., 1964; Нечаев Г. А., Федотов E. Д., Применение пластических масс для гидроизоляции зданий, Л. -M., 1965; Указания по проектированию гидроизоляции подземных частей зданий и сооружений. CH 301-65, M., 1965; Бовин Г. П., Возведение водонепроницаемых сооружений из бетона и железобетона, M., 1969.

Г. П. Бовин, С. Н. Попченко.

ГИДРОИЗОПЬЕЗЫ (от гидро... и греч. isos - равный, piezo-давлю), изопьезы, пьезоизогипсы, линии на карте, соединяющие точки с одинаковой величиной напоров подземных вод.

ГИДРОКАРБОНАТ НАТРИЯ, бикарбонат натрия, питьевая сода, NaHCO3, применяется в порошках, таблетках и растворах при по-выш. кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки, а также при заболеваниях, сопровождающихся ацидозом (сахарный диабет, инфекции и др.). Г. н. используется также в кулинарии.

ГИДРОКАРБОНАТЫ, бикарбонаты, двууглекислые соли, кислые соли угольной кислоты H2CO3, напр. NaHCO3 (гидрокарбонат натрия). Г. получают действием CO2 на карбонаты или гидроокиси в присутствии воды. При нагревании они превращаются в средние соли - карбонаты, напр. 2NaHCO3 = Na2CO3+H2O+CO2. B противоположность большинству карбонатов все Г. в воде растворимы. Г. кальция Ca(HCO3)2 обусловливает временную жёсткость воды. В организме Г. выполняют важную физиологич. роль, являясь буферными веществами, регулирующими постоянство реакции крови (см. Буферные системы).

ГИДРОКОДОН, лекарственный препарат, успокаивающий кашель. Получают из кодеина, с к-рым Г. сходен по действию, но более активен. Применяют в таблетках при различных заболеваниях лёгких и верхних дыхат. путей.

ГИДРОКОМБИНЕЗОН, гидрокостюм, часть водолазного снаряжения, предохраняющая водолаза от переохлаждения и травм. Различают: Г. водонепроницаемые, изготовляемые из прорезиненной ткани в виде склеенных в одно целое или раздельных шлема, рубахи с перчатками (или без них) и штанов с ботами; к шлему присоединяются дыхат. трубки от водолазного аппарата, и Г. водопроницаемые (" мокрые"), выполняемые из губчатой резины в виде плотно облегающих тело водолаза рубахи со шлемом и отдельно штанов с чулками. Г. выпускаются различных размеров и конструкций в зависимости от типов используемых водолазных аппаратов. См. также Водолазное дело.

ГИДРОКОРТИЗОН, 17-оксикор-тикостерон, кортизол, один из глюкокортикоидов; гормон, образующийся в коре надпочечников и регулирующий преимущественно углеводный обмен. Надпочечники человека секретируют за сутки от 5 до 30 мг Г. При состояниях напряжения (см. Адаптационный синдром) и при введении адренокор-тикотропного гормона образование Г. может увеличиваться в 5 раз.

В мед. практике применяют Г. как препарат из группы гормональных препаратов, оказывающий противовоспалит. и антиаллергич. действие. Г. (и Г.-ацетат в виде суспензий) назначают при лечении ревматизма, бронхиальной астмы, лейкемии, эндокринных и др. заболеваний; местно (чаще в виде мази) при экземе, нейродермитах, глазных заболеваниях и др.

ГИДРОКРЕКИНГ, каталитич. процесс переработки низкосортных топлив; см. Гидрогенизация деструктивная.

ГИДРОКС, способ беспламенного взрывания, основанный на использовании энергии паров воды, азота и углекислого газа, образующихся с выделением тепла в результате практически мгновенного протекания внутри патрона (также наз. Г.) хим. реакции спец. порошкообразной смеси.

ГИДРОКСИЛАЗЫ, группа ферментов, относящихся к классу оксидоредуктаз; катализируют включение в молекулу субстрата атома кислорода из O2. Реакция протекает при участии окисляющегося при этом восстановленного никотинамидаде-ниндинуклеотид-фосфата. Г. играют важную роль в обмене ряда циклич. соединений, в т. ч. стероидов.

ГИДРОКСИЛАМИН, H2NOH, продукт замещения группой ОН одного атома водорода в молекуле аммиака NH3; бесцветные кристаллы игольчатой формы. Плотность 1204, 4 кг/м3 (при 23, 50C), tпл 33-34 0C, tкип 58 0C при 2, 933 кн/м2 (22 мм рт. ст.). При 00C Г. устойчив, при 20 0C медленно разлагается; повышение темп-ры усиливает разложение, при 130 0C Г. взрывает. Г. гигроскопичен, хорошо растворяется в воде с образованием гидрата Г., являющегося слабым основанием: NH2OH-H2O < -> NH3OH++OH-. При взаимодействии с к-тами гидрат Г. образует соли гидроксиламмония, напр. NH3OHCl, (NH3OH)2SO4, обладающие сильными восстановит, свойствами. Г. хорошо растворяется в метиловом и этиловом спиртах, нерастворим в ацетоне, бензоле, петролейном эфире. Кислородом воздуха Г. окисляется до HNO2. Сульфат Г. в пром-сти получают восстановлением нитрита натрия сернистым газом в присутствии соды. Свободный Г. получают отгонкой из щелочных растворов солей. Г. и его производные ядовиты. Соли Г. широко применяются в фармацевтич. пром-сти, в произ-ве капрона и др. и в аналитич. химии.

Лит.: Брикун И. К., Козловский M. Т., Никитина Л. В., Гидразин и гидроксиламин и их применение в аналитической химии, А.-А., 1967.

В. С. Лапик.

ГИДРОКСИЛЬНАЯ ГРУППА, гидроксил, одновалентная группа ОН, входящая в молекулы многих химич. соединений, напр, воды (HOH), щелочей (NaOH), спиртов (C2H5OH) и др.

ГИДРОКСОНИЙ, гидратированный ион водорода H3O+; см. Гидроний и Оксони-евые соединения.

ГИДРОЛ, отход крахмало-паточного произ-ва; сиропообразная однородная жидкость тёмно-коричневого цвета, получающаяся при вторичной кристаллизации гидратной глюкозы из растворов осаха-ренного крахмала. В Г. содержится 65 - 66% сухих веществ. В их составе: 68 - 72% редуцирующих веществ и 5-6% золы (в т. ч. 2-3% хлористого натрия). Сбраживается ок. 70% редуцирующих веществ (гл. обр. глюкоза). Применяется в произ-ве питат. сред, этанола и комбинированных кормов, при дублении кож.

Лит.: Химия и технология крахмала, под ред. P. В. Керра.пер. с англ., 2 изд., M., 1956; Производство кристаллической глюкозы из крахмала, M., 1967.

ГИДРОЛАЗЫ, класс ферментов, катализирующих реакции гидролитического (с участием воды) расщепления внутримолекулярных связей (гидролиза). Г. широко распространены в клетках растений и животных. Участвуют в процессах обмена белков, нуклеиновых кислот, углеводов, липидов и др. биологически важных соединений. По типу гидролизуе-мой связи класс Г. делят на ряд подклассов: действующие на сложноэфирные связи (напр., липаза); на гликозильные связи (напр., амилаза); на пептидные связи (напр., пепсин); на кислотноан-гидридные связи (напр., аденозинтрифос-фатаза) и т. д.

По химич. природе большинство Г.- простые белки; для проявления их каталитич. активности необходимо наличие неизменённых сульфгидрильных (SH-) групп, занимающих определ. положение в полипептидной цепи. Ряд Г. получен в кристаллич. виде (уреаза, пепсин, трип-син, химотрипсин и др.). Механизм каталитич. действия нек-рых исследованных Г. включает соединение фермента с расщепляемым веществом с последующим отщеплением продуктов реакции и освобождением фермента. Показано, что в механизмах ферментативного гидролиза много общего с механизмом действия трансфераз и что нек-рые Г. могут переносить отщепляемые группы не только на воду, но и на др. молекулы.

E. И. Королёв.

ГИДРОЛАККОЛИТ (от гидро... и греч. lakkos - яма и lithos - камень), многолетний бугор пучения с ледяным ядром, образующийся в результате увеличения объёма подземной воды при замерзании в условиях гидростатического напора в областях развития многолетне-мёрзлых горных пород. Г. достигают 25- 40 м вые. и 200 м ширины и имеют форму купола с крутыми склонами, пологого кургана или валообразного поднятия; сверху ядро покрыто приподнятыми деформированными отложениями, к-рые разбиты трещинами. В СССР распространены гл. обр. в Якутии.

ГИДРОЛИЗ (от гидро... и греч. lysis - разложение, распад), реакция ионного обмена между различными веществами и водой. В общем виде Г. можно представить ур-нием: А - В + H - OH < -> A - H + B - ОН, где А - В-гидролизующееся вещество, А - H и В - ОН - продукты Г.

Равновесие в процессе Г. солей подчиняется действующих масс закону. Если в результате Г. образуется нерастворимое или легколетучее вещество, Г. идёт практически до полного разложения исходной соли. В остальных случаях Г. солей проходит тем полнее, чем слабее соответствующая соли к-та или основание.

Если Г. подвергается соль, образованная слабой к-той и сильным основанием, напр. KCN, раствор имеет щелочную реакцию; это объясняется тем, что анион слабой к-ты частично связывает образовавшиеся при диссоциации воды ионы H+ и в растворе остаётся избыток ионов ОН-:

K++CN- + HOH < -> HCN+K++OH-. Раствор соли сильной к-ты и слабого основания, например NH4Cl, - кислый (NH4++ Cl-+ HOH< -> NH4OH + H+ +Cl-). Если заряд катиона (или аниона) соли больше единицы, то Г. часто приводит к образованию кислых (или основных) солей в качестве продуктов первой ступени процесса, напр.:

CuCl, -> Cu(OH)Cl -> Cu(OH)2.

Количеств, характеристикой Г. солей может служить степень гидролиза (а), определяемая отношением концентрации гидролизованной части молекул к общей концентрации данной соли в растворе; в большинстве случаев она невелика. Так, в 0, 1 молярных растворах ацетата натрия CH3COONa или хлорида аммония NH4Cl при 25 0C а = 0, 01%, а для ацетата аммония CH3COONH4 а = 0, 5%. С повышением темп-ры и разбавлением раствора степень Г. увеличивается.

Г. солей лежит в основе многих важных процессов в химич. пром-сти и лабораторной практике. Частичный Г. трёх-кальциевого силиката является причиной выделения свободной извести при взаимодействии портландцемента с водой (см. Цемент). Благодаря Г. возможно существование буферных систем, способных поддерживать постоянную кислотность среды. Такие растворы имеют и очень важное физиологич. значение - постоянная концентрация ионов H+ необходима для нормальной жизнедеятельности организма. С Г. солей связан ряд геологич, изменений земной коры и образование минералов, формирование природных вод и почв.

Гидролиз органических соединений - расщепление орга-нич. соединения водой с образованием двух или более веществ. Обычно Г. осуществляется в присутствии кислот (кислотный Г.) или щелочей (щелочной Г.). Гидролитич. расщеплению чаще всего подвергаются связи атома углерода с другими атомами (галогенами, кислородом, азотом и др.). Так, щелочной Г. галогенидов служит методом получения (в том числе и промышленного) спиртов и фенолов, напр.:

[ris]

В зависимости от строения углеводородного радикала (R) и от условий реакции Г. галогенпроизводных может осуществляться как мономолекулярный (SwI) или бимолекулярный (5м2) процесс. В случае мономолекулярной реакции вначале происходит ионизация связи углерод-галоген, а затем образующийся ион карбония реагирует с водой; щёлочь, если она добавлена, не влияет на скорость Г. и служит только для нейтрализации выделяющейся галогеяоводородной кислоты и смещения равновесия:

[ris]

В случае бимолекулярной реакции скорость Г. прямо пропорциональна концентрации щёлочи:

[ris]

Исключительно важен Г. сложных эфи-ров (реакция, обратная этерификации):

[ris]

Кислотный Г. сложных эфиров является обратимым процессом:

[ris]

Щелочной Г. сложных эфиров необратим, поскольку он приводит к образованию спирта и соли кислоты:

[ris]

Этот процесс широко применяется в пром-сти для получения спиртов и кислот, напр, при омылении жиров с целью получения глицерина и солей высших алифатич. кислот (мыла).

Аналогично сложным эфирам гидролизуются амиды кислот:

[ris]

Случаи Г. углерод-углеродной связи сравнительно редки. К ним относятся, в частности, кетонное (действием кислот и разбавленных щелочей) и кислотное (действием конц. щёлочи) расщепление 1, 3-дикарбонильных соединений, напр, ацетоуксусного эфира:

[ris]

Термин " Г" обычно применяется в орга-нич. химии также по отношению к нек-рым процессам, к-рые более правильно было бы называть гидратацией; примером может служить превращение нитрилов кислот в амиды:

[ris]

Г. сложноэфирных, гликозидных (в углеводах) и амидных (в белках) связей играет огромную роль в жизнедеятельности любых организмов, напр., в таких процессах, как усвоение пищи, передача нервных импульсов и т. п. Г. в живом организме катализируется ферментами гидролизами. См. также Гидролиз растительных материалов.

Лит.: Киреев В. A, Курс физической химии, 2 изд., M., 1956; Реутов О. А., Теоретические проблемы органической химии, 2 изд., M., 1964.

ГИДРОЛИЗ ДРЕВЕСИНЫ, см. Гидролиз растительных материалов.

ГИДРОЛИЗ РАСТИТЕЛЬНЫХ МАТЕРИАЛОВ, взаимодействие полисахаридов (см. Сахара) непищевого растит, сырья (древесные отходы, хлопковая шелуха, подсолнечная лузга и т. п.) с водой в присутствии катализаторов - минеральных к-т. Исходное растит, сырьё обычно содержит до 75% нерастворимых в воде полисахаридов в виде целлюлозы и ге-мицеллюлоз, при разложении к-рых вначале образуются промежуточные соединения, а затем простейшие сахара-монозы. Наряду с образованием моноз происходит и их частичный распад с образованием фурфурола, органич. к-т, гуминовых к-т и др. веществ. Скорость гидролиза растёт с увеличением темп-ры и концентрации к-ты.

Г. р. м. является основой гидролизных производств, служащих для получения важных пищевых, кормовых и технич. продуктов. В производств, условиях продуктами Г. р. м. являются гидролизах ы- растворы моноз (пентоз и гексоз, в частности глюкозы), летучие вещества (органич.к-ты, спирты) и твёрдый остаток - гидролизный лигнин. Выход моноз может достигать 90% от полисахаридов.

Гидролизаты подвергают дальнейшей био-хим. или хим. переработке в зависимости от профиля гидролизных произ-в и требуемых видов товарной продукции.

Наиболее распространена биохим. переработка гидролизатов для получения белково-витаминных веществ - дрожжей кормовых. Один из важнейших продуктов гидролизного произ-ва - этиловый спирт также получают биохим. путём- сбраживанием гексоз гидролизатов.

Пищевую глюкозу и техническую ксилозу получают соответственно из гексозных и пентозных гидролизатов путём очистки их от минеральных и органич. примесей, упаривания и кристаллизации. При хим. переработке гидролизатов восстановлением содержащихся в них моноз получают многоатомные спирты: из гексоз образуются соответствующие гекси-ты (сорбит, маннит, дульцит и т. д.), а из пентоз - пентиты (ксилит, арабит и др.). Путём гидрогенолиза многоатомных спиртов можно получить глицерин, пропиленгликоль и этиленгликоль. Дегидратацией пентоз получают фурфурол, выход к-рого зависит от состава сырья и условий гидролиза и дегидратации. При дегидратации гексоз образуется леву-линовая к-та, используемая в ряде хи-мич. синтезов.

При пиролизе лигнина образуются смолы и полукокс, к-рый подвергают тер-мич. активации для получения активных газовых и обесцвечивающих углей. При обработке гидролизного лигнина концентрированной серной к-той образуется активный уголь-коллактивит. При обработке щелочами лигнин растворяется, а при последующем подкислении выделяется активированный лигнин, являющийся активным наполнителем синтетич. каучука. Гидролизный лигнин используют также как топливо. См. также Гидролизная промышленность.

С. В. Чепиго.

ГИДРОЛИЗЕР, аппарат для проведения реакции гидролиза в крахмало-паточном произ-ве. Г. бывают периодич. и непрерывного действия. Первые в свою очередь делятся на аппараты, работающие при атм. давлении (заварные чаны) и при повыш. давлении (конверторы). В заварном чане вода и к-та доводятся до интенсивного кипения, в чан из мерника подаётся крахмальное молоко (заварка), гидролиз крахмала (осахаривание) происходит одновременно с выпариванием сиропа. Длительность заварки и осахари-вания 4-4, 5 ч. В конверторах гидролиз ведётся при повышенных темп-ре и давлении и продолжается всего 18-20 мин. Г. непрерывного действия имеют ряд преимуществ: непрерывность процесса, позволяющая регулировать осахаривание и, следовательно, повысить качество сиропа; более равномерное потребление пара; сокращение расхода топлива. Все процессы протекают одновременно над разными порциями крахмального молока, к-рое непрерывно и последовательно переходит из одной зоны в другую. Такой Г. состоит из трубчатого 5-секционного подогревателя и осахаривателей. В подогревателе осуществляется клейстеризация крахмала и нагревание клейстера до темп-ры осахаривания (ок. 1450C). Далее сироп поступает на два последовательно соединённых осахаривателя, где завершается осахаривание. Гидролиз продолжается 8-10 мин.

Лит.: Технология крахмало-паточного производства, 3 изд., M., 1959; Бузыкин Н" А., Технологическое оборудование крахмальных и крахмало-паточных заводов, M., 1959; Выщепан А. Г., Мельмай M. E., Товароведение продовольственных товаров, M., 1960; Производство кристаллической глюкозы из крахмала, M., 1967.

" ГИДРОЛИЗНАЯ И ЛЕСОХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ", научно-технич. и производств, журнал, орган Мин-ва целлюлозно-бум. пром-сти СССР, Главного управления микробиологич. пром-сти при Сов. Мин. СССР и Научно-технич. об-ва бум. и деревообрабат. пром-сти. Издаётся в Москве с 1948 (до 1955 - " Гидролизная промышленность СССР"), Освещает вопросы получения из непищ. сырья этилового спирта, кормовых дрожжей, фурфурола, двуокиси углерода и др. продуктов гидролиза, переработки сульфитных и сульфатных щёлоков, а также произ-ва в лесохимич. пром-сти канифоли, скипидара, древесного угля, уксусной к-ты, ацетатных растворителей и добычи живицы путём подсочки леса. Периодичность - 8 номеров в год. Тираж (1971) 3250 экз.

ГИДРОЛИЗНАЯ ПРОМЫШЛЕННОСТЬ, объединяет произ-ва, основанные на химич. переработке растит, материалов путём каталитич. превращения полисахаридов в моносахариды. Вырабатывает из непищевого растит, сырья - отходов лесозаготовок, лесопиления и деревообработки, а также с. х-ва - кормовые дрожжи, этиловый спирт, глюкозу и ксилит, фурфурол, органич. кислоты, лигнин и др. продукты. Нар.-хоз. значение Г. п. заключается прежде всего в том, что она использует огромные ресурсы растит, отходов для произ-ва ценной продукции, на выпуск к-рой в др. отраслях пром-сти расходуется значит, количество пищ. и кормовых продуктов (зерно, картофель, патока и др.). Совр. уровень технологии позволяет получать методом гидролиза из 1 т сухого древесного сырья, в зависимости от профиля произ-ва, 220 кг кормовых белковых дрожжей или 35 кг дрожжей и 175 л этилового спирта или 105-110 кг дрожжей и 70-80 кг фурфурола.

В дореволюционной России, несмотря на открытия русских учёных в области гидролиза и наличие огромной сырьевой базы, Г. п. не было. В СССР возникла в 1935. До 1943 выпускала только этиловый спирт, в 1943 было организовано произ-во кормовых дрожжей, в 1944-46 - фурфурола. Г. п. СССР производит широкий ассортимент продукции. Гл. направлением её развития является расширение произ-ва кормовых дрожжей путём строительства мощных гидролизно-дрожжевых предприятий.

СССР располагает практически неограниченными запасами полисахаридсодер-жащих растит, материалов. При совр. уровне произ-ва лесоматериалов и переработки древесины в СССР общее количество отходов древесины составляет ок. 100 млн. м3 в год (не считая низкокачеств. древесины, получаемой в процессе заготовки леса, к-рая используется большей частью как топливо). Кроме того, сырьём для пром. переработки может служить ок. 1 млн. т стержней початков кукурузы, подсолнечной лузги, хлопковой шелухи, собирающихся ежегодно на калибровочных и маслозаводах. Содержание полисахаридов в этих растит, отходах достигает 70%, что в 2-3 раза превышает содержание сахарозы в сахарной свёкле или крахмала в картофеле и равно количеству крахмала в кукурузном зерне, 1 т абсолютно сухой хвойной древесины заменяет при произ-ве этилового спирта 0, 6 т зерна или 1, 6 т картофеля. Гидролизный з-д, перерабатывающий 150 тыс. плотных м3 древесных отходов и дров, производит такое количество этилового спирта и кормовых дрожжей, на произ-во к-рых потребовалось бы ок. 36 тыс. т зерна или 20 тыс. т патоки. Из 1 м3 пиловочника получают товарных пиломатериалов на 28 руб., а при комплексной переработке 1 м3 отходов лесопиления- продукции на 60-70 руб.

Гидролизные предприятия размещены в Архангельской обл., Карел. АССР, Ленинградской обл., в БССР, УССР, Мол д. CCP, Краснодарском крае, Груз. CCP, Казах. CCP, Пермской обл., на средней и ниж. Волге, на Урале, в Красноярском крае, Иркутской обл. и на Д. Востоке. Крупнейшие предприятия Г. п.- Красноярский, Бирюсинский (Иркутская обл.), Канский (Красноярский край) и Тавдинский (Свердловская обл.) гидролизные з-ды, Ферганский (Узбекская CCP) з-д фурановых соединений. Г. п. располагает мощной производств, базой. Развитие Г. п. и выработка осн. видов продукции характеризуются данными табл. 1.

Табл. 1.- Производство основных видов продукции гидролизной промышленности в СССР
Годы Этиловый спирт, тыс. дал Кормовые дрожжи, тыс. m Фурфурол, тыс. т
       
    0, 07  
    1, 08 0, 44
    9, 75 4, 43
    97, 10 17, 12

Большая часть гидролизных предприятий кооперируется с лесопильно-дерево-обрабат. и целлюлозно-бумажными, масло-жировыми предприятиями, непосредственно получая от них энергетич. ресурсы и отходы. Об основных хим.-тех-нологич. процессах гидролизных произ-в см. в ст. Гидролиз растительных материалов.

Механизация трудоёмких процессов и операций в Г. п. технически в основном решена, однако не везде ещё механизированы погрузочно-разгрузочные работы. Частично осуществлена автоматизация. Фондовооружённость и производительность труда показаны в табл. 2.

Табл. 2. - Производительность труда и Фондовооружённость в гидролизной промышленности СССР
Показатели    
Выработка валовой продукции на одного работающего в % к 1960    
Фондовооружённость, в рублях    

Г. п. интенсивно развивается и в др. со-циалистич. странах. В Болгарии с 1965 работают 2 гидролизно-дрожжевых з-да, в Венгрии, Польше кормовые дрожжи производят в основном из мелассы и отходов спиртового произ-ва, в ГДР и Чехословакии - на базе использования сульфитного щёлока.

Среди капиталистич. стран Г. п. развита в США, Франции, Италии, Финляндии, Японии и представлена гл. обр. произ-вом фурфурола и кормовых дрожжей. Наиболее крупное произ-во фурфурола в США.

Лит.: Гидролизная и сульфитно-спиртовая промышленность СССР, Сборник справочных материалов, M., 1957; Шарков В. И., Технология гидролизного сульфитно-спиртового производства, M., 1959; Басин Д. M., Козлов А. И., Вопросы экономической эффективности гидролизной промышленности, М. -Л., 1961. В. H. Шлянин.

ГИДРОЛИМФА (от гидро... и лимфа), жидкость, циркулирующая в каналах гастроваскулярной системы нек-рых ки-шечнополостных животных; доставляет клеткам и тканям питат. вещества и удаляет продукты их обмена. Гастроваску-лярная система сообщается с внешней средой, и поэтому состав Г. (содержание органических веществ и солей) непостоянен.

ГИДРОЛОГИЧЕСКАЯ СТАНЦИЯ, 1)производств, орган Гидрометеорологической службы СССР, осуществляющий наблюдение и изучение гидрологич. режима водных объектов и территории (на реках - уровень воды, темп-pa воды, скорость течения, мутность, ледовые явления и др.). Г. с. имеют пункты наблюдений (посты), оборудованные соответств. устройствами и приборами. Г. с. подразделяются на речные, озёрные, болотные, воднобалансовые, снеголавинные, селе-стоковые, ледниковые, морские. 2) Пункт в к.-л. одной точке моря (озера) с известными координатами, где проводится с судна серия гидрологич. наблюдений: состояния моря (озера) и погоды, прозрачности и цвета, темп-ры и химич. состава воды на различных глубинах, а также направления и скорости течения.

Е. М. Старостина,

ГИДРОЛОГИЧЕСКИЕ КАРТЫ, карты, отображающие распределение вод на земной поверхности, характеризующие режим водных объектов и позволяющие оценить водные ресурсы отд. частей суши. К Г. к. относятся карты речной сети, её густоты и озёрности, карты стока, карты источников питания, ледового режима, мутности воды в реках, минерализации и химич. состава природных вод, нек-рых характерных явлений: пересыхания и перемерзания, наводнений, карты составляющих водного баланса, испарения с поверхности суши и водной поверхности, коэффициента стока, карты гидрологич. районирования, использования и перспектив использования. Особенности режима озёр и водохранилищ отображаются на спец.картах, аналогичных мор. картам (см. Морские навигационные карты). Основными Г. к. являются карты стока (среднего, максимального и минимального). Для оценки водных ресурсов территории наиболее существенна роль карты распределения среднего многолетнего (нормы) стока. Сток отд. рек показывают на карте (водоносности) в виде масштабной полосы, соответствующей величине стока в разных створах. Карта водоносности характеризует отд. реки; сток с территории (и её увлажнённость) хорошо отражают карты модуля стока (в л/сек -км2) и слоя (в мм за год, месяц, сезон). В условиях малой гидрометеорологич. изученности территории Г. к. являются наиболее надёжными источниками информации о её водных ресурсах. Впервые карта стока была составлена в США в 1892 Ф. Ньюэллом. В СССР первую карту стока (весеннего половодья притоков Днепра) опубликовал П. Н. Лебедев (1925). В 1927 Д. И. Кочерин впервые составил каргу среднего многолетнего стока Европ. части СССР. В 1937 Б. Д. Зайков и С. Ю. Беленков опубликовали карту стока СССР. Первая карта стока всего земного шара выполнена М. И. Львовичем (1945). Наиболее полно распределение ср. стока СССР отражено на картах Б. Д. Зайкова (1946), В.А. Троицкого (1948), а также в Физико-географич. атласе мира (1967).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.015 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал