Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Г. Г. Винберг. 9 страница
Больших успехов в создании Г. достигли фирмы: " Хитати", " Мицубиси", " Тосиба" (Япония), " Нохаб" (Швеция), " Нейрпик" (Франция), " Инглиш электрик" (Великобритания), " Фойт" (ФРГ) и др. Напр., япон. фирмой " Тосиба" проектируются Г. для ГЭС Гранд-Кули-III единичной мощностью 600 Мет на напор 87 м с диаметром рабочего колеса 9, 7 м. Лит.: Шпанхаке В., Рабочие колёса насосов и турбин, пер. с нем., ч. 1, M.- Л., 1934; Турбинное оборудование гидроэлектростанций, под ред. А. А. Морозова, 2 изд.. М. -Л., 1958; Ковалев H. H., Гидротурбины, М.-Л., 1961; Кривченко Г. И., Автоматическое регулирование гидротурбин, М.-Л., 1964; Tenot A., Turbines hydrauliques et regulateurs automa-tiques de vitesse, v. 1-4, P., 1930-35. M. Ф. Красилъников. punctuation; tab-interval: 36.0pt" > ГИДРОУГОЛЬ, Всесоюзный н. -и. и проектно-конструктор-ский ин-т добычи угля гидравлическим способом (ВНИИГидроуголь), организован в 1955 в Новокузнецке Кемеровской обл. Осн. тематика ин-та: создание и совершенствование техники и технологии подземной добычи угля гидравлич. способом. По структуре ин-т является комплексным. Включает науч. и проектную части, экспериментальный з-д, шах-томонтажное управление пуско-наладочных работ и вычислит, центр. Издаёт; Труды; (с 1962). ГИДРОУДАРНОЕ БУРЕНИЕ, способ проходки скважин, при к-ром разрушение породы на забое осуществляется погружными (работающими непосредственно в скважине) гидравлич. забойными машинами ударного действия. Первые патенты на гидроударные машины были выданы в кон. 19 в., а работоспособные модели созданы в 1900-07 и применялись для бурения скважин на нефть на Кавказе. Гидроударная машина приводится в действие энергией потока жидкости, нагнетаемой насосом с поверхности по колонне бурильных труб. Эта жидкость очищает забой от продуктов разрушения породы и удаляет их на поверхность. При бурении с отбором керна применяются коронки буровые, армированные вставками из твёрдого сплава; при бурении сплошным забоем - лопастные и шарошечные долота. Гидроударные машины для бурения на твёрдые полезные ископаемые при расходе промывочной жидкости 100- 300 л/мин имеют энергию единичного удара 70-80 дж (7-8 кгс-м) и частоту ударов 1200-1500 в мин', осевая нагрузка на забой создаётся в пределах 4000 - 8000 н (400-800 кгс), частота вращения снаряда 25-100 об/мин в зависимости от твёрдости и абразивности проходимых пород. Рациональная область применения Г. б. - породы средней и высокой твёрдости, к-рые наиболее эффективно разрушаются под действием ударных нагрузок. Гидроударные машины обеспечивают повышение производит, бурения в 1> 5-1, 8 раза при снижении стоимости на 20-30% по сравнению с твердосплавным и алмазным бурением вращат. способом. Лит.: Ударно-вращательное бурение скважин гидроударниками, М., 1963; Теория и практика ударно-вращательного бурения, М 1967. Л. э. Граф, А. Т. Киселёв. ГИДРОУЗЕЛ, узел гидротех-нич. сооружений, группа гид-ротехнич. сооружений, объединённых по расположению и условиям их совместной работы. В зависимости от осн. назначения Г. делятся на энергетич., водно-трансп., водозаборные и др. Г. чаще всего бывают комплексные, одновременно выполняющие несколько водохоз. функций. Различают Г.: низконапорные, - когда разность уровней воды верхнего и нижнего бьефов (напор) не превышает 10 м, - устраиваемые на равнинных реках, преим. в пределах их русла (гл. обр. для трансп. или энергетич. целей), и на горных реках (для забора воды с целью получения электроэнергии или орошения земель); средненапор-н ы е (с напором 10-40л)-на равнинных или предгорных участках рек, предназначенные гл. обр. для транспортно-энерге-тич; , а также ирригац. целей (создаваемый ими подпор приводит к затоплению поймы реки в верхнем бьефе, образуя водохранилище, используемое для суточного и сезонного регулирования стока реки, осветления воды, борьбы с наводнениями и т. п.); в ы с о к о н а-п о р н ы е (с напором более 40 м), служащие обычно для комплексных целей - энергетики, транспорта, ирригации и др. Сооружения, входящие в состав Г., подразделяются на основные и вспомогательные. Основные сооружения, обеспечивающие нормальную работу Г., в свою очередь, делятся на общие (плотины, поверхностные и глубинные водосбросы, сооружения для удаления льда, шуги, наносов, регуляционные, сопрягающие и др.), обеспечивающие необходимые напор и ёмкость водохранилища, а также гидравлич. условия, отвечающие изменённому гидрологич. режиму реки (см. Гидротехнические сооружения), и специальные (ГЭС, судоходные шлюзы, судоподъёмники, рыбоходы, бревноспуски, плотоходы и т. д.), выполняющие те функции, для к-рых был создан Г. К вспомогат. сооружениям относятся жилые, адм.-хоз. и культурно-бытовые здания, сооружения водопровода и канализации, дороги и т. п. Временные сооружения (перемычки, склады строит, материалов, бетонные и арматурные з-ды, мастерские, подъездные пути и пр.) обычно функционируют в период строительства Г., но нек-рые из них иногда совмещают с постоянными (напр., путём включения перемычек в состав плотины). Прочие сооружения -транзитные дороги и мосты, проходящие в зоне Г. (напр., пересечение Калининской ж. д. с каналом им. Москвы в р-не расположения шлюза № 8), промышленные предприятия, возникшие на его базе и использующие его электроэнергию и т. п., связываются с Г. гл. обр. территориально. Место размещения Г., т. е. тех его сооружений, к-рые образуют т. н. напорный фронт, наз. створом. Взаимное расположение осн. сооружений, называемое компоновкой Г., представляет собой сложную инж. задачу, решаемую с учётом эксплуатац., строит, и тех-нико-экономич. требований. Большое разнообразие природных и местных условий не позволяет установить единые правила для размещения и компоновки Г. Эти вопросы решаются каждый раз индивидуально с учётом всего комплекса условий, требований и характера взаимодействия сооружений. Помимо разрешения водохоз. задач, сооружения Г. должны отвечать и эстетическим требованиям; они служат созданию арх. ансамбля, органически связанного с окружающей природой. Вся терр. гидроузла имеет чёткое архитектурно-функцион. зонирование. Нередко гидро-технич. комплекс влияет на планировку и застройку расположенных поблизости старых и вновь возникающих городов, посёлков, заводов (Волховская ГЭС и г. Волхов, Днепрогэс и г. Запорожье). Гидроузлы, расположенные на небольшом расстоянии друг от друга, могут иметь единое архитектурно-стилевое решение (каскад Верхневолжских гидроузлов, СССР). Главные сооружения, организующие архитектурный ансамбль Г., - плотина, гидроэлектростанция, судоходный шлюз с подходными каналами. На рис. 1 показана схема Красноярского Г. на р. Енисей транспортно-энергетич. назначения. В его состав входят водосливная и глухая бетонные плотины, ГЭС мощностью 5 млн. кет и судоподъёмник, расположенный на левом берегу реки. На рис. 2 приведён план строящегося Нурек-ского Г. на р. Вахш, к-рый предназначен для регулирования стока реки в целях орошения и получения гидроэнергии. Г. включает самую высокую в мире каменно-земляную плотину (вые. 300 м), береговой водосброс, туннельный водозабор, здание ГЭС и др. Илл. см. на вклейке, табл. XIX, XX (стр. 512-513). Лит. см. при ст. Гидротехника. В. Н. Поспелов. ГИДРОФИЗИКА, раздел геофизики, изучающий физ. процессы, протекающие в водной оболочке Земли (гидросфере). К общим вопросам, изучаемым Г., относятся: молекулярное строение воды во всех трёх её состояниях (жидком, твёрдом, газообразном); физ. свойства воды, снега, льда - тепловые (теплопроводность, теплоёмкость), радиац., электрич., радиоактивные, акустич., механич. (упругость, вязкость и др.), а также процессы, происходящие в водоёмах - динамические (течения, волны, приливы и отливы), термические (нагревание и охлаждение водоёмов, испарение и конденсация, образование и таяние льда и снега), распространение, поглощение и рассеяние света в толще воды, снега и льда. Г. подразделяется на физику моря и физику вод суши. Последняя исследует реки, озёра, водохранилища, подземные воды и др. водные объекты на материках применительно к задачам гидрологии суши, а также термич. и динамич. процессы изменения запасов влаги в речных бассейнах (в верхнем, корнеобитаемом слое почво-грунтов и на поверхности - D снежном покрове, ледниках и снежниках). В физике вод суши развитие получили вопросы турбулентного движения воды, перенос турбулентными потоками наносов и взаимодействия потока и русла. Эта совокупность вопросов выделилась в особую дисциплину - динамику руслового потока. Довольно широко разработана термика пресных водоёмов - закономерности образования и роста поверхностного и внутриводного льда, тепловой баланс водоёмов и снежного покрова и т. п. В физике моря изучаются процессы, происходящие в морях и океанах: динамика морских течений, приливных, поверхностных и внутр. волн, взаимодействие моря с атмосферой, термика, акустика, оптика моря и др. Лит.: Шулейкин В. В., Физика моря, 4 изд., М., 1968; Великанов М. А., Гидрология суши, 5 изд., Л., 1964; Лебедев А. Ф., Почвенные и грунтовые воды, 4 изд., М. - Л., 1936. 77. 77. Кузьмин. ГИДРОФИЛИЯ (от гидро... и греч. philia - любовь), приспособленность цветков нек-рых водных растений к опылению под водой (напр., у роголистника, наяды, взморника). Гидрофилами наз. также погружённые в воду растения (см. Гидатофиты). ГИДРОФИЛЬНОСТЬ И ГИДРОФОБНОСТЬ, понятия, характеризующие сродство веществ или образованных ими тел к воде; это сродство обусловлено силами межмолекулярного взаимодействия. Слова; гидрофильный; и; гидрофобный; могут относиться в равной степени к веществу, к поверхности тела и к тонкому (в пределе - толщиной в одну молекулу) слою на границе раздела фаз (тел). Г. и г.- частный случай лиофилъности и лио-фобности - характеристик молекулярного взаимодействия веществ с различными жидкостями. Общей мерой гидрофильное™ служит энергия связи молекул воды с поверхностью тела; её можно определить по теплоте смачивания, если вещество данного тела нерастворимо. Гидрофобность следует рассматривать как малую степень гидрофильности, т. к. между молекулами воды и любого тела всегда будут действовать в большей или меньшей степени межмолекулярные силы притяжения. Г. и г. можно оценить по растеканию капли воды на гладкой поверхности тела. На гидрофильной поверхности капля растекается полностью, а на гидрофобной - частично, причём величина угла между поверхностями капли и смачиваемого тела зависит от того, насколько данное тело гидро-фобно. Гидрофильны все тела, в которых интенсивность молекулярных (атомных, ионных) взаимодействий достаточно велика. Особенно резко выражена гидрофильность минералов с ионными кристаллич. решётками (напр., карбонатов, силикатов, сульфатов, глин и др.), а также силикатных стёкол. Гид-рофобны металлы, лишённые окисных плёнок, органич. соединения с преобладанием углеводородных групп в молекуле (напр., парафины, жиры, вески, нек-рые пластмассы), графит, сера и др. вещества со слабым межмолекулярным взаимодействием. Понятия Г. и г. применимы не только к телам или их поверхностям, но и к единичным молекулам или отд. частям молекул. Так, в молекулах поверхностно-активных веществ различают гидрофильные (полярные) и гидрофобные (углеводородные) группы. Гидрофильность поверхности тела может резко измениться в результате адсорбции таких веществ. Повышение гидрофильности наз. гидрофилизацией, а понижение - гидрофобизацией. Оба эти явления играют важную роль при обогащении руд методом флотации. В текст, технологии гидрофилизация тканей (волокон) необходима для успешного крашения, беления, стирки и т. д., а гидрофо-бизация - для придания тканям водостойкости и непромокаемости (см. Гидрофобные покрытия). ГИДРОФИЛЬНЫЕ КОЛЛОИДЫ, дисперсные системы, в к-рых диспергированное вещество взаимодействует с дисперсной средой (водой). См. Гидрофильность и гидрофобностъ. ГИДРОФИТЫ (от гидро... и греч. phy-ton - растение), водные растения, прикреплённые к почве и погружённые в воду только нижними своими частями. Г. обитают по берегам рек, озёр, прудов и морей, а также на болотах и заболоченных лугах (т. н. гелофиты). Нек-рые Г. могут расти на влажных полях в качестве сорняков, как, напр., частуха, тростник и др. Корневая система у Г. хорошо развита и служит как для проведения воды и растворённых в ней питат. веществ, так и для укрепления растений на местах их обитания. В отличие от гидатофитов, Г. имеют хорошо развитые механич. ткани и сосуды, проводящие воду. В тканях Г. много межклетников н возд. полостей, по к-рым доставляется воздух в нижние части растения, т. к. в воде меньше кислорода, чем в воздухе. Из культурных растений к Г. относится рис. Многие Г., участвуя в процессе зарастания водоёмов, являются торфообразователями. Нек-рые Г., особенно среди однодольных растений, служат кормом для скота. См. также Водные растения. ГИДРОФИЦИРОВАННАЯ КРЕПЬ, гидравлическая крепь, горная крепь, в к-рой работа несущих элементов (стоек), передвижение крепи, перемещение перекрытий, защитных кожухов и вспомогат. узлов осуществляются с помощью гидравлпч. устройств. См. Механизированная кпепъ. ГИДРОФОБИЯ (от гидро... и греч. phobos - боязнь, страх), водобоязнь, устаревшее название бешенства. ГИДРОФОБНЫЕ КОЛЛОИДЫ, дисперсные системы, в к-рых диспергированное вещество не взаимодействует с дисперсной средой (водой). См. Гидрофильность и гидрофобностъ. ГИДРОФОБНЫЕ ПОКРЫТИЯ, тонкие слои несмачивающихся водой веществ на поверхности гидрофильных материалов. Г. п. часто наз. водоотталкивающими, что неправильно, т. к. молекулы воды не отталкиваются от них, а притягиваются, но крайне слабо (см. Гидрофильность и гидрофобностъ). Г. п. в виде мономолекулярных слоев (адсорбционных ориентированных слоев толщиной в одну молекулу) или плёнок типа лаковой получают обработкой материала растворами, эмульсиями пли (реже) парами гпдрофобнзаторов - веществ, слабо взаимодействующих с водой, но прочно удерживающихся на поверхности. В качестве гпдрофобизаторов применяют соли жирных кислот и таких металлов, как медь, алюминий, цирконий и др., катионоактивные поверхностно-активные вещества, низко- и высокомолекулярные кремнийорганич. и фтор-органнч. соединения. Г. п. служат для защиты различных материалов (металла, древесины, пластмасс, кожи, тканых и нетканых волокнистых материалов) от разрушающего действия воды или намокания. Особенно широко их применяют в машиностроении, строительстве и текст, произ-ве. ГИДРОФОБНЫЙ ЦЕМЕНТ, гидрофобный портландцемент, гидравлическое вяжущее вещество, получаемое в результате тонкого измельчения портландцементного клинкера (см. Портландцемент) совместно с гипсом и гидрофобизующей добавкой (асидол, мылонафт, олеиновая кислота, окисленный петролатум, кубовые остатки синте-тич. жирных кислот и др.). Добавка, вводимая в количестве 0, 1-0, 3% от массы цемента, образует на поверхности его частиц тончайшие (мономолекулярные) гидрофобные плёнки, уменьшающие гигроскопичность цемента и поэтому предохраняющие его от порчи при длительном хранении даже в условиях повышенной влажности. Бетоны и растворы на Г. ц. отличаются меньшим водопоглощепием, большей морозостойкостью и водонепроницаемостью, чем на обычном цементе. Наряду с портландцементом, можно гид-рофобизировать также шлаковые, глиноземистые и др. виды цемента. М. И. Хигерович. ГИДРОФОН (от гидро... и греч. phone- звук), гидроакустический звукоприёмник. Г. являются электроакустическими преобразователями и применяются в гидроакустике для прослушивания подводных сигналов и шумов, для измерит, целей, а также как составные элементы направленных приёмных гидроакустич. антенн. Наиболее распространены Г., основанные на электродинамич., пьезоэлектрич. и магнитострикционном эффектах. Электродинамич. Г. по принципу действия не отличаются от возд. электродинамич. микрофонов, если не считать особенностей конструкции, связанных с изоляцией от воды. В пьезоэлектрич. Г. используется прямой пьезоэффект (см. Пьезоэлектричество) нек-рых кристаллов (сегнетова соль, кварц, дигидрофосфат аммония, сульфат лития и т. д.), при к-ром переменная деформация кристалла вызывает появление переменных поверхностных электрич. зарядов и соответственно переменной электродвижущей силы на электродах-обкладках. Широко пользуются пьезоэлектрич. керамич. материалами (типа керамики титаната бария, титаната-цирко-иата свинца и др.). Чувствит. элементы пьезоэлектрич. Г. изготавливают в виде пакетов прямоугольной или цилиндрической формы. Магнитострикционные Г. основаны на обратном магнитострикционном эффекте (см. Магнитострикция) нек-рых ферромагнитных металлов (в основном никеля и его сплавов), при к-ром деформация вызывает появление переменной магнитной индукции в магнитопроводе и как следствие - переменной эдс на обмотке. Чувствит. элементы Г. (сердечники) набираются, как правило, из тонких пластин для избежания потерь на токи Фуко (см. Вихревые токи). Г., предназначенные для измерит, целей, должны быть ненаправленными и обладать ровной частотной характеристикой во всей области исследуемых частот. Для этой цели удобно пользоваться малыми по сравнению с длиной волны полыми сферич. приёмниками из пьезокерамики, совершающими сферические симметричные колебания. Одна из важнейших характеристик Г.- чувствительность, представляющая собой отношение электрич. напряжения к звуковому давлению в мкв/бар', она лежит в пределах от долей мкв/бар для малых (диаметром в неск. мм) керамических сферических приёмников до сотен мкв/бар для пакетов из пьезоэлектрических кристаллов. Для увеличения чувствительности (а также для устранения шунтирующего действия кабеля) пользуются Г. с предварит, усилителями, к-рые монтируются в одном корпусе с приёмником и вместе опускаются в воду. Лит.: Тюрин А. М., Сташкевич А. П., Таранов Э. С., Основы гидроакустики, Л., 1966. Б. Ф. Куръянов. ГИДРОФОРМИНГ, один из способов переработки нефтепродуктов. См. Ри-форминг. ГИДРОФТАЛЬМ (от гидро... и греч. ophthalmos - глаз), водянка гла-з а, увеличение у детей глазного яблока при врождённой глаукоме. ГИДРОХИМИЯ, наука о хим. составе природных вод и закономерностях его изменения в зависимости от хим., физ. и биол. процессов, протекающих в окружающей среде. Г. как наука о химии гидросферы является частью геохимии и одновременно частью гидрологии. Г. имеет большое значение для развития ряда смежных наук: петрографии, минералогии, почвоведения, гидрогеологии, гидробиологии и др. Знание хим. состава воды (определяющего её качество) необходимо для таких областей практич. деятельности, как водоснабжение, орошение, рыбное х-во; гидрохим. сведения важны для оценки коррозии строит, материалов (бетон, металлы), для характеристик минеральных вод, при поисках полезных ископаемых (нефть, рудные месторождения, радиоактивные вещества) и т. д. Изучение хим. состава воды приобретает громадное значение при борьбе с загрязнением водоёмов сточными водами. В России начало изучения Г. связано с работами М. В. Ломоносова и т. и. академическими экспедициями 18 в. Теперь изучение хим. состава воды ведётся в различных науч. и высших уч. заведениях, в лабораториях предприятий пром-сти и транспорта, в сан. и гигиенич. учреждениях и инспекциях, в лабораториях системы водоснабжения. Особенно важны стационарные гидрохимические работы, проводимые на станциях (морских, речных, озёрных) гидрометеорологич. сети Гид-рометслужбы. В СССР издано большое число науч. работ по Г., существует постоянный печатный орган; Гидрохимические материалы; (с 1915); в 1921 создан единственный в мире Н.-и. ин-т гидрохимии, в соответствующих вузах читается курс Г. На совр. этапе развития Г. можно различать след, её разделы: 1) Формирование хим. состава природных вод. Этот раздел включает изучение воды как растворителя сложного комплекса минералов земной коры и исследование хим. процессов, происходящих в воде при взаимодействии с породами, почвами, организмами и атмосферой. Рассматривается растворимость веществ, встречающихся в природе, их состояние в растворе и стабильность, а также сорбционные, обменные, окислителыю-восстановит. процессы и мн. др. К этому разделу, весьма близкому геохимии, следует отнести общие вопросы круговорота веществ и вопросы миграции элементов в гидросфере. 2) Хим. состав и гидрохим. режим определённых видов природных вод, зависимость их изменений от физико-геогр. условий окружающей среды. Этот обширный раздел близко примыкает к гидрологии, и его частями являются химия рек и озёр, химия моря, химия подземных и атм. вод. Химия поверхностных вод изучает хим. состав воды в реках, озёрах, искусств, водоёмах, его изменения по терр. или акватории и по глубинам, сезонные суточные колебания, а также условия формирования состава в зависимости от окружающей среды. Большое значение приобретает прогнозирование хим. состава водохранилищ, создаваемых в засушливых областях, и борьба с загрязнениями, вносимыми в водоёмы. Исследования соляных озёр, богатых минеральным сырьём, очень важны для хим. пром-сти. Химия моря, тесно примыкающая к океанологии, наряду с изучением солёности, биогенных веществ и растворённых газов в зависимости от гидродинамич., гидрометеорологич. и гидробиологич. факторов, изучает формы и содержание микроэлементов, генезис и процессы метаморфизации органич. веществ, процессы взаимодействия мор. воды с речной и мор. донными осадками и пр. Химия подземных вод включает изучение хим. состава грунтовых, пластовых, артезианских, минеральных вод и вод нефтяных месторождений. Важнейшие направления здесь - формирование состава вод, процессы взаимодействия воды с окружающими породами, происходящие под высокими давлениями и часто повышенными темп-рами при замедленном водообмене и своеобразных микробиол. условиях. Большое значение издавна имеет изучение минеральных вод, весьма разнообразных по составу и происхождению. 3) Методика гидрохим. исследований. Этот раздел является спец. ветвью аналитической химии, применительно к специфике анализа природных вод. В настоящее время в Г. широко применяются методы спектроскопии, хроматографии, полярографии, меченых атомов и др. физико-хим. методы. Большой раздел анализа - определение компонентов загрязнений воды. Лит.: Алекин О. А., Основы гидрохимии, Л., 1953; его же, Химия океана, Л., 1966; его же, Гидрохимия за 50 лет,; Гидрохимические материалы;, 1968, т. 46; Вернадский В. И., Избр. соч., т. 4, кн. 2 - История природных вод, М., 1960; Виноградов А. П.. Введение в геохимию океана, М., 1967; Приёмы санитарного изучения водоёмов, под ред. С. М. Драчева, М., 1960; Драчев С. М., Борьба с загрязнением рек, озёр и водохранилищ промышленными и бытовыми стоками, М. - Л., 1964; Химический состав атмосферных осадков на Европейской территории СССР, под ред. Е. С. Селезнёвой, Л., 1964; Резников А. А., Муликовская Е. П., Соколов И. Ю., Методы анализа природных вод, М., 1963: Овчинников А. М., Гидрогеохимия, М., 1970. О. А. Алекин. ГИДРОХИНОН, n-диксибензол, бесцветные кристаллы, с„л 170, 3 & deg; С; плотность 1, 358 г/см3', возгоняется в вакууме. Г. хорошо растворим в спирте, эфире, плохо- в бензоле; 5, 7 г Г. растворяется в 100 г воды при 15; С. Г.- сильный восстановитель; в вод- ных, особенно в щелочных, растворах окисляется кислородом воздуха. В пром-сти Г. получают восстановлением хинона, а также щелочным плавлением и-фенолсульфокислоты n-Бензохинон. или и-хлорфенола. Г. применяют как проявитель в фотографии, как антиоксидант. Г. служит полупродуктом в синтезе многих органич. красителей. Его применяют в аналитич. химии при фотометрич. определении ряда элементов. Молекулярное соединение Г. гидрон, применяют при определении кенцентрации водородных ионов. Соединение Г. с глюкозой-арбутин - широко распространено в природе. Г. впервые получен нем. химиком Ф. Вёлером в 1844. ГИДРОХОРИЯ (от гидро... и греч. cho-гёо - продвигаюсь, распространяюсь), распространение плодов, семян и др. зачатков растений водными течениями. Г. характерна преим. для болотных и водных растений, водорослей и нек-рых грибов. Приспособлениями для такого способа переноса служат различные вздутия и выросты на плодовых или семенных оболочках (или особые клетки - в спорах грибов), наполненные воздухом и действующие как плавательные пузыри. Г. наблюдается у частухи, стрелолиста, сусака, ежеголовника, рдеста и др. ГИДРОЦЕЛЕ (от гидро... и греч. kele- опухоль), водянка яичка, скопление серозной жидкости в оболочках яичка, возникающее вследствие затруднения оттока её по лимфатич. сосудам. Может быть врождённым или возникать при воспалит, заболеваниях яичка (см. Орхит), его придатков (см. Эпиди-димит), семенного канатика, при травмах или новообразованиях. Развитию Г. способствуют паховые грыжи и расширение вен семенного канатика. Лечение: при остром Г., не сопровождающемся сильными болями и повышением темп-ры тела, - устранение осн. заболевания; при хронич. Г.- хирургич. вмешательство. ГИДРОЦЕФАЛИЯ (от гидро... и греч. kephale - голова), водянка мозга, головная водянка, чрезмерное увеличение количества спинномозговой жидкости в полости черепа. Причина Г.- либо избыточная продукция спинномозговой жидкости в головном мозге, либо затруднение её оттока из мозговых желудочков вследствие воспалит, процессов, при опухолях и др. заболеваниях, приводящих к закрытию отверстий, через к-рые жидкость выходит из желудочков. Врождённая Г. обусловлена врождённым сифилисом, токсоплазмозом; приобретённая Г. возникает (обычно в раннем детстве) после перенесённых менингитов, менингоэнце-фалитов, травм головы, интоксикаций и др. Наиболее постоянный признак Г. у детей - увеличенный в объёме череп. В местах, где не произошло нормального срастания костей черепа, могут образоваться округлые пульсирующие выпячивания. Нередко бывает косоглазие и нистагм. Иногда отмечаются снижение зрения и слуха, головные боли, тошнота. Интеллект снижен. Лечение: устранение причины, вызвавшей Г.; иногда - хирургич. операция. Профилактика: устранение вредностей, действующих на мать во время беременности, и предупреждение нейроинфекций в детском возрасте. Лит.: Арендт А. А., Гидроцефалия и её хирургическое лечение, М., 1948. В. С. Ротенберг. ГИДРОЦИКЛОН (от гидро... и греч. kyklon - вращающийся), аппарат для разделения в водной среде зёрен минералов, отличающихся значением массы. Различают Г. классификаторы, сепараторы и сгустители. Классификаторы применяются для разделения зёрен по крупности, сгустители - для отделения части воды от зёрен и сепараторы - для обогащения полезных ископаемых в минеральных суспензиях. Г. представляет собой конус / (рис., а) с короткой цилиндрич. частью 2, имеющей питающий патрубок 3, по к-рому подаётся гидросмесь, и сливное отверстие 4. У конич. части предусмотрена насадка 5, через к-рую разгружается нижний продукт разделения. Питающий патрубок расположен таким образом, что пульпа вводится в Г. по касательной и вращается в нём с образованием внеш. и внутр. потоков (рис., б). Твёрдые частицы подвергаются воздействию центробежной силы и отбрасываются к периферии. Чем больше масса зерна, тем дальше оно будет отброшено. Зёрна, имеющие большую массу, чем граничные зёрна, по к-рым производится разделение, остаются во внеш. потоке и, перемещаясь к вершине конуса, разгружаются через насадку. Зёрна с меньшей массой попадают во внутр. поток и выносятся через сливное отверстие. Ввиду простоты конструкции Г. находят всё большее применение в пром-сти. Их совершенствование выражается также в применении сочетания неск. Г. с получением различных продуктов и в автоматическом регулировании процесса разделения зёрен. Впервые Г. применён в 1939 на углеобогатит. фабрике в Голландии. Серийное производство Г. в СССР начато в 1956. Лит.: Поваров А. И., Гидроциклоны, М., 1961. М.Г.Акопов. ГИДРОЦИЛИНДР силовой, гидравлический двигатель с возвратно-по-ступат. движением поршня. Широко применяется для привода главного движения станков, перемещения рабочих органов навесных, строит., дорожных и с.-х. машин, в нажимных устройствах прокатных станов, в системах регулирования для перемещения органов управления и т. д. (См. Гидропередача объёмная и Гидропривод машин.) ГИДРОЭКСТРУЗИЯ, то же, что гидростатическое прессование. ГИДРОЭЛЕВАТОР (от гидро... и элеватор), насос струйного типа для подъёма и перемещения по трубопроводу жидкостей и гидросмесей. Работа Г. основана на использовании энергии струи воды, подводимой к насадке под напором. Проходя с большой скоростью через проточную часть Г. (рис.), струя воды создаёт при вылете из насадки перепад давления. Это вызывает поступление в смесит, камеру Г. транспортируемого материала. Из смесит, камеры струя рабочей жидкости увлекает образующуюся гидросмесь в диффузор. В диффузоре скорость движения гидросмеси снижается, но повышается её давление за счёт перехода части кинетич. энергии струи в потенц. энергию потока, чем и обеспечивается перемещение гидросмеси по трубопроводам. Г. не имеет движущихся частей и прост в конструктивном исполнении, но его кпд не превышает 20-25%.
|