Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Химическая и электрохимическая К. 13 страница
Лит.: Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика,?., 1967; Наблюдательные основы космологии, Сб., М., 1965; ЗельмановА. Л., Космология, в кн.: Физический энциклопедический словарь, т. 2, М., 1962; Бесконечность и Вселенная, Сб., М., 1969; Peebles, P.J.E., Physical Cosmology, Princeton, 1972. Г. И. Наан. КОСМОНАВТ (от космос и греч. nautes - мореплаватель), астронавт, человек, проводящий испытания и эксплуатацию космич. техники в космич. полёте; профессия, появившаяся в результате проникновения в космос человека (1961). Первых кандидатов в космонавты отбирали из числа воен. лётчиков (СССР), лётчиков-испытателей (США), т. к. необходимые качества (высокое лётное мастерство, способность мгновенно принимать решения, хорошая переносимость шумов, вибраций, ускорений и сочетание этих факторов, опыт проведения наблюдений и регистрации их результатов и т. д.) наиболее полно сочетаются в этих профессиях. Позднее, как в СССР, так и в США, в экипажи космич. кораблей стали включать инженеров и учёных с необходимыми спец. знаниями. Подготовка К. в Советском Союзе началась в 1960, в США для полётов на космич. кораблях «Меркурий»- в 1959, «Джемини» и «Аполлон»- в 1962.На 1 сент. 1973 лица, совершившие полёты в космос в качестве пилотов или членов экипажей: Ю. А. Гагарин (1961), Г. С. Титов (1961), А. Г. Николаев (1962, 1970), П. Р. Попович (1962), В. Ф. Быковский (1963), В. В. Терешкова (Николаева-Терешкова) (1963), В. М. Комаров (1964, 1967), К. П. Феоктистов (1964), Б. Б. Егоров (1964), П. И. Беляев (1965), А. А. Леонов (1965), Г. Т. Береговой (1968), В. А. Шаталов (1969-2 раза, 1971), А. С. Елисеев (1969-2 раза, 1971), Е. В. Хрунов (1969), Б. В. Волынов (1969), Г. С. Шонин (1969), В. Н. Кубасов (1969), А. В. Филипченко (1969), В. Н. Волков (1969, 1971), В. В. Горбатко (1969), В. И. Севастьянов (1970), Рукавишников (1971), Г. Т. Добровольский (1971), В. И. Пацаев(1971) - СССР; А. Шепард (1961, 1971), В. Гриссом (1961, 1965), Дж. Гленн (1962), М. С. Карпентер (1962), У. Шир-ра (1962, 1965, 1968), Г. Купер (1963, 1965), Дж. Янг (1965, 1966, 1969, 1972), Дж. Макдивитт (1965, 1969), Э. Уайт (1965), Ч. Конрад (1965, 1966, 1969, 1973), Ф. Борман (1965, 1968), Дж. Ловелл (1965, 1966, 1968, 1970), Т. Стаффорд (1965, 1966, 1969), Н. Армстронг (1966, 1969), Д. Скотт (1966, 1969, 1971), Ю. Сернан (1966, 1969, 1972), М. Коллинз (1966, 1969), Р. Гордон (1966, 1969), Э. Ол-дрин (1966, 1969), У. Каннингем (1968), Д. Эйзел (1968), У. Андерс(1968), Р.Швей-карт (1969), А. Бин (1969, 1973), Дж. Суиджерт (1970), Ф. Хейс (1970), Э. Митчелл (1971), С. Руса (1971), А. Уорден (1971), Дж. Ирвин (1971), Т. Маттингли (1972), Ч. Дыок (1972), Р. Эванс (1972), X. Шмитт (1972), Дж. Кервин (1973), П. Вейц (1973), О. Гэрриот (1973), Дж. Лусма (1973) - США. Биографич. сведения о К. см. в статьях о них. Г.А.Назаров. КОСМОНАВТИКА (от космос и греч. nautike - искусство мореплавания, кораблевождение), полёты в космич. пространстве; совокупность отраслей науки и техники, обеспечивающих освоение космоса и внеземных объектов для нужд человечества с использованием разного рода космических летательных аппаратов. К. включает проблемы: теории космич. полётов - расчёты траекторий и др.; науч.-технические - конструирование космич. ракет, двигателей, бортовых систем управления, пусковых сооружений, автоматич. станций и пилотируемых кораблей, науч. приборов, наземных систем управления полётами, служб траекторных измерений, телеметрии, организация и снабжение орбитальных станций и пр.; медико-биологические - создание бортовых систем жизнеобеспечения, компенсация неблагоприятных явлений в человеческом организме, связанных с перегрузкой, невесомостью, радиацией и др.; юридич.-международно-правовое регулирование вопросов использования космич. пространства и планет и т. п. Историческая справка. В своих мечтах, воплощённых в сказках, легендах, фантастич. романах, человечество уже давно стремилось в космос, об этом свидетельствуют и многочисл. (как правило, неосуществимые) изобретения прошлого. Рассказы о полёте в небо уже встречаются в ассиро-вавилонском эпосе, в др.-кит. и иранских легендах. В др.-инд. поэме «Махабхарата» содержатся наставления для полёта на Луну. Широко известен греч. миф о полёте к Солнцу Икара на крыльях, скреплённых воском. Полёт к Луне на крыльях описал Лукиан Са-мосатский (2 в. н. э.). Теоретич. обоснование возможности полётов в космич. пространстве впервые было дано рус. учёным К. Э. Циолковским в кон. 19 в. В своём труде «Исследование мировых пространств реактивными приборами» (1903) и дальнейших работах Циолковский показал реальность технич. осуществления космич. полётов и дал принципиальное решение ряда осн. проблем К. Помимо трудов Циолковского, вопросам К. были посвящены работы И. В. Мещерского (с 1897), Ю. В. Кондратюка (1919-29), Ф. А. Цандера (1924-32), Н. А. Рынина (1928-32) и др. рус. учёных. За рубежом ранние труды по К. были опубликованы Р. Эно-Пелътри (Франция, 1913), Р. Годдардом (США, 1919), Г.Обертом (Германия, 1923). В 20-х гг. 20 в. были основаны первые общества К.: в СССР (1924), Австрии (1926), Германии (1927), Великобритании и США (1930). Целью этих обществ была пропаганда идей К. и содействие решению практич. проблем в этой области. В СССР работы в области ракетной техники начаты в 1921; в это время была организована Газодинамическая лаборатория (ГДЛ). С 1928 под рук. Н. И. Тихомирова (основателя ГДЛ) проводились лётные испытания ракет на бездымном шашечном порохе. С 1929 в ГДЛ В. П. Глушко начал разработку ракет с электрич. (ЭРД) и жидкостными (ЖРД) ракетными двигателями. Первые испытания ЭРД проведены в 1929, ЖРД - в 1931. В 1932 в Москве была создана производственная Группа изучения реактивного движения (ГИРД), осуществившая под рук. С. П. Королёва в 1933 первые пуски сов. жидкостных ракет конструкции М. К. Тихонравова и Ф. А. Цандера. В конце 1933 на базе ГДЛ и ГИРД был основан Реактивный н.-и. ин-т (РНИИ). Эти три орг-ции внесли основополагающий вклад в развитие сов. ракетостроения. Выросшее из ГДЛ опытно-конструкторское бюро (ГДЛ - ОКБ) по разработке ЖРД совм. с др. ОКБ, ин-тами и заводами обеспечили дальнейшее развитие ракетной и космич. техники в СССР. В США экспериментальные работы с ЖРД были начаты Р. Годдардом в 1921, а пуски жидкостных ракет производились с 1926. В Германии стендовые испытания двигателей этого класса начаты Г. Обертом в 1929, а лётные испытания жидкостных ракет - И. Винклером в 1931. Во время 2-й мировой войны 1939- 1945 Германия использовала жидкостные ракеты с дальностью полёта 250-300 км (ракета V-2 конструкции В. фон Брауна). Потенциальные возможности нового оружия побудили многие страны форсировать работы по ракетной технике после войны, в результате чего были созданы межконтинентальные и др. балли-стич. ракеты, снабжённые ядерными боеголовками. Эти работы косвенным образом способствовали созданию необходимой технич. базы К. Космическая эра. Начало космич. эры - 4 окт. 1957, дата запуска в СССР первого искусств, спутника Земли (ИСЗ). Вторая важнейшая дата космич. эры - 12 апр. 1961- день первого космич. полёта Ю. А. Гагарина, начало эпохи непосредственного проникновения человека в космос. Третье историч. событие К.- первая лунная экспедиция 16-24 июля 1969, выполненная Н. Армстронгом, Э. Олдрином и М. Коллинзом (США). Космич. аппараты созданы и используются в ряде стран: в СССР с 1957, в США с 1958, во Франции с 1965, в Японии и КНР с 1970, в Великобритании с 1971. О масштабах работ, ведущихся по К., можно судить по количеству, напр., сов. искусств, спутников Земли, Солнца, Луны и Марса, число к-рых на 1 июля 1973 составляло 742 при массе 2233 т, или 4388 т вместе с конечной ступенью ракет-носителей; 2-я космич. скорость сообщена 41 объекту массой 110 т, а вместе с конечной ступенью ракеты 167 т. Аналогичный масштаб приобрели работы по К. в США. На 1 мая 1973 космич. полёты совершили 25 сов. космонавтов на 18 кораблях и орбитальной станции «Салют», 38 амер. космонавтов на 27 орбитальных кораблях; число ИСЗ, выведенных на орбиты др. странами: 7 - Франция, 4 - Япония, 2 - КНР, 1 - Великобритания. Основоположником практической К. является С. П. Королёв. К 1957 под его руководством был создан ракетно-космический комплекс, позволивший запустить первый искусственный спутник Земли, а затем был осуществлён вывод на околоземные орбиты ряда автоматически управляемых космич. аппаратов; к 1961 был отработан и запущен космич. корабль «Восток», на котором совершил первый полёт Ю. А. Гагарин. Королёв руководил разработкой автоматических межпланетных станций для исследования Луны (вплоть до «Луны-9», совершившей первую мягкую посадку на Луну), первых экземпляров космич. аппаратов «Зонд» и «Венера», космич. корабля «Восход» (первый многоместный корабль, из к-рого совершён первый выход человека в космич. пространство) и т. д. Не ограничивая свою деятельность созданием ракет-носителей и космич. аппаратов, Королёв осуществлял общее тех-нич. руководство работами по обеспечению первых космич. программ. Важный вклад в развитие сов. ракетно-космич. техники сделан также конструкторскими бюро, возглавляемыми М. К. Янгелем, Г. Н. Бабакиным, А. М. Исаевым, С. А. Косбергом и др. Под руководством В. П. Глушко (основатель и руководитель ГДЛ - ОКБ) разработаны мощные ЖРД, установленные на всех советских ракетах-носителях, летавших в космос (1957-73). Совр. теория космич. полётов основана на небесной механике и теории управления движением летат. аппаратов. В отличие от классич. небесной механики, новое направление наз. астродинамикой. К. потребовала разработки оптимальных траекторий космич. летат. аппаратов (выбор времени старта и вида траектории, исходя из требования минимальных затрат топлива ракеты-носителя) с учётом эволюции этих траекторий под действием возмущающих сил (особенно гравитац. полей, эффекта аэродинамич. торможения от взаимодействия космич. аппарата с разреженными верхними слоями атмосферы для искусств, спутников планет и под действием солнечного давления для межпланетных перелётов). Требование оптимальности приводит иногда к достаточно сложным траекториям - с длит, перерывами в работе ракетных двигателей носителя (напр., при старте к Луне, Марсу и Венере осуществляется вывод космич. аппарата на траекторию ИСЗ и лишь затем к планете) и с использованием гравитац. поля небесных тел (напр., при полёте к Луне с целью изгиба траектории, необходимого для возвращения к Земле без запуска ракетного двигателя). Важный раздел астродинамики - теория коррекций траекторий полёта. Отклонение фактич. траектории от расчётной связано с двумя факторами: искажением траектории возмущающими силами, к-рые невозможно учесть заранее (напр., торможение ИСЗ атмосферой, плотность её изменяется нерегулярно), и неизбежными при технич. реализации малыми ошибками в скорости и направлении полёта космич. аппарата в момент выключения двигателей носителя (эффект ошибок постепенно нарастает при межпланетных полётах). Коррекция заключается в кратковременном включении ракетного двигателя для исправления траектории. В теории коррекции рассматриваются вопросы оптимальности коррекц. манёвра (наивыгоднейшее число, расположение точек коррекций на траектории и т. п.). Для выполнения коррекций и манёвров необходимо знание фактич. траектории полёта космич. аппарата. Если определение фактич. орбиты производится на борту летящего аппарата, то оно является составной частью автономной навигации и состоит из измерения углов между звёздами и планетами, расстояний до планет, времени захода и восхода Солнца и звёзд относительно края планет и т. п. и обработки измеренных данных по методам небесной механики на бортовой вычислит, машине. Создание ракетно-космич. комплексов - сложная науч.-технич. проблема. Большие ракеты-носители достигают стартовой массы до 3000 т и имеют длину св. 100 м. Для размещения в них необходимых запасов топлива (90% полной массы) конструкция ракет должна быть чрезвычайно лёгкой, что достигается рациональными конструктивными решениями и разумным снижением требований к запасам прочности и жёсткости. В полёте, по мере расходования топлива, опорожненные части баков становятся излишними, их дальнейший разгон требует неоправданного расхода топлива, и поэтому оказывается целесообразным создавать многоступенчатые конструкции носителей (обычно от 2 до 4 ступеней); ступени ракеты отбрасываются последовательно, по мере опорожнения баков. Совр. ракета-носитель представляет собой сложный комплекс устройств, из к-рых наиболее важны двигат. установка и система управления. Обычно применяют химич. жидкостные ракетные двигатели, реже на твёрдом топливе; двигатели, основанные на потреблении ядерной энергии, находятся (1973) ещё в стадии экспериментальных исследований, однако, несомненно, что использование в будущих космич. экспедициях ядерной энергетики вполне реально. Пилотируемые полёты к Марсу с высадкой человека на его поверхность и др. аналогичные космич. программы требуют огромных энергетич. затрат, к-рые возможно реализовать лишь при использовании ядерных источников энергии совместно с химическими. Мощность двигательных установок ракет-носителей измеряется десятками млн. квт. Разработка мощных и экономных ракетных ЖРД для носителей направлена на выбор энергетически оптимальных топлив и обеспечение достаточно полного сжигания их в камере сгорания при высоких давлениях и темп-pax. При этом приходится решать трудные задачи охлаждения работающего двигателя, создавать устойчивость процесса горения в нём топлива и мн. др. Двигат. установки носителей, как правило, состоят из нескольких двигателей, синхронизация работы к-рых ведётся системой управления. Системы управления движением обычно автономные, т. е. работающие без вмешательства наземных пунктов. Они состоят из гироскопич. и др. датчиков первичной информации, измеряющих мгновенное угловое положение носителя и действующие на него ускорения. Вычислительная машина определяет по этой информации фактич. траекторию и ведёт управление таким образом, чтобы к моменту выключения ракетных двигателей получить нужную комбинацию координат ракеты и её вектора скорости. Управление угловым положением носителя усложняется малой жёсткостью его конструкции и большой долей жидких масс в нём. Поэтому оно ведётся с учётом изгибных колебаний корпуса и колебат. движения жидких масс в баках. Готовность ракеты-носителя к пуску проверяют на технической позиции космодрома в монтажно-испытательном корпусе, затем она транспортируется на стартовую площадку, где устанавливается на пусковую систему, проходит предстартовые испытания, заправку баков топливом и производится её пуск. Окончанием выведения космич. аппарата на орбиту считается превышение первой космич. скорости (ок. 7, 91 км/сек) для ИСЗ и достижение скорости порядка второй космической (11, 19 км/сек) для аппаратов, летящих к Луне, Марсу или Венере (для полёта к дальним планетам или Солнцу необходимо развить скорость, заметно превышающую вторую космическую). При этом ракета-носитель отделяется от космич. летат. аппарата, продолжающего дальнейший орбитальный полёт, происходящий гл. обр. по инерции, согласно законам небесной механики. Выводимые на орбиты космич. летат. аппараты можно разбить на 2 группы: для полёта вблизи Земли (ИСЗ) и в дальний космос, напр, к Луне или планетам. Эти аппараты могут содержать более или менее мощные ракетные ступени, если предполагается заметным образом изменять скорость полёта - для торможения при подлёте к планете назначения, если необходимо перейти на орбиту искусств, спутника планеты, для мягкой посадки на планету, лишённую атмосферы, для взлёта с неё и для разгона космич. аппарата до скорости, обеспечивающей возвращение к Земле. В будущем для разгона космич. летат. аппарата от первой космич. скорости до более высоких предполагается использование экономичных электрич. ракетных двигателей. Недостатком их является малая тяга, в результате чего разгон от первой до второй космич. скорости (или торможение от второй до первой) может длиться неск. месяцев. Для получения нужной тяги необходимы мощные источники электроэнергии, использующие ядерную энергию, что создаёт дополнительные трудности при создании космич. аппаратов в связи с необходимостью защиты приборов, а на пилотируемых аппаратах и экипажа от вредных излучений.
Космич. аппараты должны обладать способностью к длит, самостоят, функционированию в условиях космич. пространства. Для этого необходимо иметь на них ряд систем: систему, поддерживающую заданный температурный режим; энергопитания, использующую для получения электрич. энергии солнечное излучение (напр., солнечные батареи), топливо (напр., электрохимия, генераторы тока) или ядерную энергию; систему связи с Землёй и космич. летат. аппаратами, управления движением и др. Кроме того, на борту устанавливается весьма разнообразная науч. аппаратура-от небольших приборов для изучения свойств космич. пространства до крупных телескопов. Эти приборы и системы объединяются системой управления бортовым комплексом, согласовывающей их работу. Управление движением сводится к решению ряда задач: управлению ориентацией космич. аппарата, управлению при коррекции и работе ракетных блоков при мягкой посадке и взлёте, при сближении и др. взаимном маневрировании космич. аппаратов. Особый случай управления - спуск на поверхность планеты, имеющей атмосферу. Различают спуск в атмосфере с использованием её для торможения скорости полёта - неуправляемый (баллистический) и управляемый. Последний характеризуется высокой точностью посадки в заданном районе и более низкими перегрузками при торможении в атмосфере. Для защиты спускаемого аппарата от тепла, выделяющегося при торможении в атмосфере, применяются теплозащитные покрытия. Для пилотируемого космич. аппарата (космич. корабля) возникает ряд дополнит, медико-биологич. проблем. Космич. корабль должен обеспечивать экипажу защиту от космич. среды (вакуум, вредные излучения и т. п.) и иметь систему жизнеобеспечения. Эта система поддерживает нужный состав атмосферы внутри корабля, её темп-ру, влажность и давление; при кратковременных полётах предусматриваются запасы пищи, воды и пр., при длительных- произ-во пищевых продуктов, регенерация воды и кислорода должны происходить на борту. Полёт в космосе предъявляет повышенные требования к человеческому организму (влияние невесомости, перегрузок при взлёте и посадке и др.), поэтому необходим мед. отбор космонавтов. Вопрос о допустимости длит, пребывания человека в условиях невесомости ещё не решён. При спуске на поверхность небесных тел должны решаться задачи установки науч. аппаратуры, выполнения экспериментов стационарными и мобильными автоматами, а в дальнейшем - осуществление экспедиций и строительство временных или постоянных баз для поселения космонавтов. Обеспечение полёта космнч. летат. аппарата требует, как правило, широкой сети наземных служб управления. По всей терр. Земли расположены пункты космической связи, а там, где это невозможно, в океане, находятся оборудованные корабли (напр., корабли «Юрий Гагарин» и -«Космонавт Владимир Комаров»). При посадке космич. летат. аппарата на Землю включается в работу служба спасения и эвакуации, в задачу к-рой входит отыскание спускаемого аппарата и его эвакуация, а при пилотируемых полётах и эвакуация экипажа, оказание ему в случае необходимости мед. помощи, карантинные мероприятия (при возвращении экипажей с небесных тел) и т. п. Для упрощения поиска спускаемого аппарата он снабжается радиопередатчиком, по сигналам к-рого движутся суда, самолёты и вертолёты службы спасения и эвакуации. Управление полётом от старта до посадки требует привлечения большого числа различных служб. Организация взаимодействия бортовых систем управления и многочисл. наземных служб производится технич. руководством полёта.
|