Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение. Как было найдено в предыдущем примере, данное число в тригонометрической форме имеет вид По первой формуле Муавра получаем:Стр 1 из 2Следующая ⇒
Как было найдено в предыдущем примере, данное число в тригонометрической форме имеет вид По первой формуле Муавра получаем: Ответ. Число z называется корнем степени из комплексного числа w, если Корень степени обозначается Пусть теперь число w фиксировано. Найдём z из уравнения Если w = 0, то у уравнения существует единственное решение z = 0. Если w ≠ 0, то положим, что нам известно тригонометрическое представление числа w = r 0(cos φ 0 + i sin φ 0), и будем искать число z также в тригонометрической форме: z = r (cos φ + i sin φ). Из определения аргумента и геометрической интерпретации комплексных чисел следует, что два комплексных числа, записанных в тригонометрической форме, равны тогда и только тогда, когда равны их модули, а аргументы отличаются на угол, кратный 2π. Имеем: откуда получается: Итак, все решения уравнения задаются формулой Заметим, что если в эту формулу подставлять натуральные числа k, то при k = 0, 1,..., n мы будем получать разные комплексные числа, а при k = n имеем: Значит, и в дальнейшем значения корней будут повторяться. Следовательно, существует ровно n корней уравнения и все они задаются одной формулой. Вторая формула Муавра:
Пример Найти
|