Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Устройство и принцип работы






Схема однофазного двухобмоточного трансформатора представлена ниже.

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков, Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины - вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1dФ/dt, e2= -n2dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinω t, ЭДС равно e = Em sin (ω t-π /2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода. В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈ E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k. Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0, 5 или 0, 35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым.

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

 

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.

 

 

Опыт короткого замыкания однофазного трансформатора

В опыте короткого замыкания однофазного трансформатора вторичная обмотка закорачивается накоротко, то есть Zн=0, а напряжение вторичной обмотки U2=0. При этом напряжение первичной обмотки подводится пониженным, для того чтобы, не повредитьтрансформатор.

Схема опыта короткого замыкания

 

В опыте короткого замыкания определяют следующие параметры:

1 – Номинальное напряжение короткого замыкания Uk. Это напряжение первичной обмотки, при котором значения токов короткого замыкания в обмотках равны номинальным. Выражается в процентном соотношении от номинального напряжения U.

2 – Параметры схемы замещения. Так как ветви намагничивания при опыте короткого замыкания нет, то ток в первичной обмотке, равен току во вторичной.

 

Следовательно, полное сопротивление короткого замыкания можно определить как

3 – Сопротивления вторичной обмотки

4 – Полное падение напряжения короткого замыкания Uk в обмотках и его активную и реактивную составляющую в %

5 – Потери короткого замыкания Pk. Так как, в опыте короткого замыкания на первичную обмотку подается пониженное напряжение, то магнитный поток имеет малую величину и им можно пренебречь. Следовательно, мощность потребляемая трансформатором расходуется на электрические потери в обмотках.

Опыт холостого хода однофазного трансформатора

Для определения параметров схемы замещения однофазного трансформатора используют опыт холостого хода.

Холостым ходом трансформатора называют режим работы, когда нагрузка на вторичной обмотке отсутствует, то есть Zн= ∞. При этом полезная мощность трансформатора равна нулю, так как ток во вторичной обмотке отсутствует. Мощность на входе трансформатора расходуется на тепловые потери в первичной обмотке I02r1 и на магнитные потери в сердечнике Pm. Так как величина тепловых потерь в первичной обмотке мала, то ей часто пренебрегают. Поэтому магнитные потери называют потерями холостого хода.

Схема проведения опыта холостого хода для однофазного трансформатора. На схеме вольтметр V1 измеряет напряжение, подведенное к первичной обмотке, вольтметр V2 показывает напряжение на вторичной обмотке, амперметр A1измеряет ток холостого хода I0, ваттметр W измеряет мощность холостого хода P0.

В опыте холостого хода определяют следующие параметры:

1 – Ток холостого хода I0. С помощью амперметра A1 определяют токхолостого хода и выражают его в процентном соотношении от номинального тока.

2 – Коэффициент трансформации k. С помощью вольтметра V1 в первичной обмотке устанавливают номинальное напряжение U, а с помощью вольтметра V2, определяют напряжение U20, которое равно номинальному U.

3 – Потери в первичной обмотке P0. Потери в первичной обмотке складываются из электрических и магнитных потерь.

4- Коэффициент мощности cosφ.

5 – Параметры намагничивающей ветви схемы замещения rm xm.

6 – Угол магнитных потерь δ

Таким образом, с помощью опыта холостого хода определяется большая часть параметров необходимых для расчета и построения векторной диаграммы или схемы замещения трансформатора. Остальные параметры определяются в опыте короткого замыкания.

Схема замещения трансформатора

Одним из средств изучения работытрансформатора является эквивалентная схема замещения, в которой магнитная связь между обмотками трансформатора замещена электрической связью, а параметры вторичной обмотки приведены к числу витков первичной.

Так как в приведенном трансформаторе k=1, то и –E1=E2. В результате точки a1и a2, b1 и b2 имеют одинаковый потенциал, поэтому на схеме их можно соединить, получив тем самым Т-образную схему замещения трансформатора.

Параметры r1, x1 – активное и индуктивное сопротивления первичной обмотки, соответственно.

r2, x2 – приведенные значения активного и индуктивного сопротивлений вторичной обмотки, соответственно.

Zн – полное сопротивление нагрузки.

Магнитный поток не зависит от нагрузки, поэтому его представляют как индуктивное сопротивление xm, активное сопротивление rm, которое обусловлено магнитными потерями и протекающий через них ток холостого хода I0. Эти параметры определяются в опыте холостого хода трансформатора.

Изменяя Zн на схеме замещения, можно получить любой режим работы трансформатора. Например, при разомкнутой вторичной обмотке Zн= ∞, что соответствует режиму холостого хода трансформатора, а при Zн= 0 – режимукороткого замыкания. При любых других значениях Zн – режим работы под нагрузкой. Режимы работы необходимы для определения параметров схемы замещения.

При практических расчетах, током холостого хода пренебрегают, тогда схема сводится к упрощенной.

Где rэкв=r1+r2’, xэкв=x1+x2

Схема замещения трансформатора

Одним из средств изучения работытрансформатора является эквивалентная схема замещения, в которой магнитная связь между обмотками трансформатора замещена электрической связью, а параметры вторичной обмотки приведены к числу витков первичной.

Так как в приведенном трансформаторе k=1, то и –E1=E2. В результате точки a1и a2, b1 и b2 имеют одинаковый потенциал, поэтому на схеме их можно соединить, получив тем самым Т-образную схему замещения трансформатора.

Параметры r1, x1 – активное и индуктивное сопротивления первичной обмотки, соответственно.

r2, x2 – приведенные значения активного и индуктивного сопротивлений вторичной обмотки, соответственно.

Zн – полное сопротивление нагрузки.

Магнитный поток не зависит от нагрузки, поэтому его представляют как индуктивное сопротивление xm, активное сопротивление rm, которое обусловлено магнитными потерями и протекающий через них ток холостого хода I0. Эти параметры определяются в опыте холостого хода трансформатора.

Изменяя Zн на схеме замещения, можно получить любой режим работы трансформатора. Например, при разомкнутой вторичной обмотке Zн= ∞, что соответствует режиму холостого хода трансформатора, а при Zн= 0 – режимукороткого замыкания. При любых других значениях Zн – режим работы под нагрузкой. Режимы работы необходимы для определения параметров схемы замещения.

При практических расчетах, током холостого хода пренебрегают, тогда схема сводится к упрощенной.

Где rэкв=r1+r2’, xэкв=x1+x2

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.012 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал