Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Обеспечение пространственной жесткости каркасно-панельного общественного здания






Здание в целом и отдельные его элементы, подвергающиеся воздействию различных нагрузок, должны обладать:

  • прочностью, которая определяется способностью здания и его элементов не разрушаться от действия нагрузок;
  • устойчивостью, обусловленной способностью здания сопротивляться опрокидыванию при действии горизонтальных нагрузок;
  • пространственной жесткостью, характеризующейся способностью здания и его элементов сохранять первоначальную форму при действии приложенных сил.

Общая устойчивость и пространственная жесткость здания зависят от взаимного сочетания и расположения конструктивных элементов, прочности узлов соединений и т.д.

В зданиях с несущими стенами пространственная жесткость обеспечивается:

  • внутренними поперечными стенами, в том числе и стенами лестничных клеток, соединяющимися с продольными наружными стенами;
  • междуэтажными перекрытиями, связывающими стены и расчленяющими их по высоте на ярусы.

В каркасных зданиях пространственная жесткость обеспечивается:

  • совместной работой колонн, ригелей и перекрытий, образующих геометрически неизменяемую систему;
  • устройством между стойками каркаса специальных стенок жесткости;
  • стенами лестничных клеток, лифтовых шахт;
  • укладкой в перекрытии настилов-распорок;
  • надежными соединениями узлов.

Указанные конструктивные решения дают лишь общие конструктивные представления о мерах по обеспечению пространственной жесткости здания.

Существуют различные схемы членения каркаса на отдельные составные части. Среди них наиболее часто применяют схему с колоннами высотой в один или два этажа (стыкование колонн между собой происходит вне узла сопряжения их с ригелем; стык делают на высоте 0, 6 м от уровня пола) и схему с колоннами, соединяемыми между собой и с ригелем в виде платформенного стыка. На рис. показан фрагмент плана каркасно-панельного здания с расположением ригелей поперек здания, а на рис.— фрагмент фасада. Жесткость здания обеспечивается также созданием горизонтального диска с помощью плит перекрытия. Стеновые панели в этом случае являются самонесущими или навесными. Пространственная жесткость каркасных высотных зданий обеспечивается, кроме гото, созданием специальных жестких горизонтальных дисков, образующих так называемые технические этажи. Их используют также для расположения инженерного оборудования. Такие пространственные горизонтальные диски вместе с вертикальными обеспечивают хорошую жесткость зданий. В практике строительства зданий в 60... 100 этажей находят применение связевые системы в виде решетчатых бесраскосных или раскосных ферм, жестко скрепленных в углах и образующих как бы в ней гний короб-оболочку, в которую заключено здание. Это очень эффективная система, так как обладает высокой пространственной жесткостью и вместе с внутренним ядром жесткости воспринимает горизонтальные нагрузки. Строительство зданий по данной конструктивной системе весьма эффективно в южных районах (обеспечивается хорошая солнцезащита) и в сейсмических (в связи со значительной их жесткостью). В случае применения для высотных зданий стальных каркасов сильные колонны по высоте скрепляют монтажными болтами, для установки которых к стальным пакетам ствола колонны приваривают ушки. Опирание нижнего стального пакета колонны на фундамент производится с фрезеровкой торца и применением весьма точно установленной на место (по слою бетона класса не ниже В25) стальной плиты с пристроганной горизонтальной площадкой для опирания колонны. Нижний конец стальной колонны закрепляют анкерными болтами, заложенными в фундамент. Стальные сварные ригели перекрытий и система косых связей с последующим забетонированием их в стены жесткости обеспечивают высокую жесткость и устойчивость несущего остова здания. Для уменьшения общей массы конструкций каркасных высотных зданий используют легкие бетоны, что позволяет снизить массу надземной части здания почти на 30%. Наружные стены применяют обычно навесными облегченного типа Рис. 12.22. Фрагмент фасада каркасно-панельного здания. МФ — фасадная стеновая панель, МП - простеночнаястеновая панель

21. Выполнить поперечный разрез одноэтажного двухпролетного производственного здания с мостовыми кранами грузоподъемностью 30т, пролет 18м, высота 10, 8 м, ширина 6м для крайних рядов колонн, 12 м для средних рядов колонн. Конструкции железобетонные. Проведите обоснование отметок верха колонн и верха консолей по крайним и средним рядам.

Разрез производственного здания

На поперечную раму здания действуют следующие нагрузки:

1. Постоянные – от веса ограждающих (кровля, стены) и несущих конструкций (фермы, связи, колонны).

2. Кратковременные – атмосферные (снеговые, ветровые), технологические (от мостовых кранов, подвесного оборудования, рабочих площадок) и др.

Расчет конструкций по первой группе предельных состояний выполняется на расчетные нагрузки и воздействия. Величины расчетных нагрузок определяются умножением нормативных значений на коэффициенты надежности по нагрузке.

.Значение момента, действующего на колонны крайнего ряда, от постоянной нагрузки, кНм:

При расчете поперечных рам снеговая нагрузка определяется на 1 м2 горизонтальной проекции. Величина снеговой нагрузки зависит от снегового района

S0 – расчётное значение веса снегового покрова на 1 м2 горизонтальной проекции земли. Соликамск – 5 снеговой район. S0=3, 2 кН/м2

- коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие. при

Расчетная погонная снеговая нагрузка на поперечную раму:

где Всррам – шаг средних колонн.

ce- коэффициент снижения снеговой нагрузки

Узловая снеговая нагрузка на ферму:

- площадь сбора нагрузки на узел фермы.

Значения моментов от снеговой нагрузки:

Схемы загружения поперечной рамы нагрузками: а – постоянной, б - снеговой.

Рис. Расчетные схемы рамы и колонны


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.012 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал