Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Газоразрядные лампы
В газоразрядных лампах электроэнергия преобразуется в свет при прохождении электрического тока через газ или пары металла. Цвет светового излучения зависит от рода газа, его давления и от вида люминофора, нанесенного на внутренние стенки стеклянного баллона лампы. Газоразрядные лампы наполняются инертными газами (неоном, аргоном, криптоном или ксеноном), а также парами ртути или натрия. Ртутные лампы. Ртутные лампы типа применяемых в промышленности состоят из следующих частей (рис.4.2): кварцевой трубки дугового разряда, наполненной аргоном и парами ртути; наружной стеклянной колбы (с внутренним люминофорным покрытием), окружающей трубку дугового разряда, закрывающей ее от воздействия потоков окружающего воздуха и предотвращающей окисление; цоколя, на котором держится вся лампа и имеются электрические контакты для подвода напряжения питания. Размеры и форма этих конструктивных элементов могут быть разными в зависимости от типа лампы - общего назначения (с прозрачной колбой, с люминесцентным покрытием, с исправленной цветностью, рефлекторная, полурефлекторная лампы), ультрафиолетовые, солнечного света и фотохимические лампы. Средний срок службы ртутных ламп общего назначения составляет 6000-12 000 ч. После того как ртутная лампа включена и в ней установился дуговой разряд, ток разряда через пары ртути сам по себе непрерывно нарастает. Поэтому его приходится ограничивать внешним балластным устройством. Рис. 4.2. Ртутная газоразрядная лампа - типичная конструкция 40-Вт лампы с люминофорным покрытием. 1 - наружная колба; 2 - рабочий электрод; 3 - токопроводящие стойки; 4 - кварцевая трубка дугового разряда; 5 - рабочий электрод; 6 - пусковой электрод; 7 - опорные траверсы трубки дугового разряда; 8 - пусковые резисторы; 9 - опорные элементы; 10 - внутреннее люминофорное покрытие.
Достоинства и недостатки: ртутные лампы отличаются высоким световым КПД (в 2-3 раза большим, чем у ламп накаливания общего назначения), большим сроком службы и компактностью, благодаря чему они хорошо подходят для регулирования светового потока. Их недостатки - высокая стоимость лампы и вспомогательного оборудования, синевато-зеленый оттенок свечения и медленный повторный пуск. Цветность ртутной лампы исправляется применением внутреннего люминофорного покрытия. Люминесцентные лампы. Люминесцентные лампы состоят из следующих основных деталей (рис. 4.3): стеклянного баллона, двух цоколей (с выводными контактами) на обоих концах баллона и двух подогревных катодов (электронных эмиттеров) из вольфрамовой нити или стальной трубки. Баллон наполнен парами ртути и инертным газом (аргоном); на внутренние стенки баллона нанесено люминофорное покрытие, преобразующее ультрафиолетовое излучение газового разряда в видимый свет. Конструкция лампы, представленная на рис. 4.3, типична для самых распространенных 40-Вт ламп Лампа действует следующим образом: электрод на одном из концов лампы испускает электроны, которые с большой скоростью летят вдоль лампы, пока не произойдет столкновение со встретившимся атомом ртути. При этом они выбивают электроны атома на более высокую орбиту. Когда выбитый электрон возвращается на прежнюю орбиту, атом испускает ультрафиолетовое излучение. Последнее, проходя через люминофор, преобразуется в видимый свет. Люминесцентные лампы делятся на две группы соответственно типу электродов: с подогревными катодами и с холодными катодами. В лампах с подогревными катодами, которые рассчитываются на большие токи (1-2 А), как правило, используются спиральные активированные вольфрамовые нити накала. В лампах же с холодными катодами предусматриваются цилиндрические электроды с покрытием из эмиттерных материалов, и они рассчитываются на меньшие токи. Средний срок службы ламп с подогревными катодами зависит от наработки на один пуск: 7500 ч при 3 ч наработки на один пуск и более 18 000 ч в непрерывном режиме. Для ламп же с холодными катодами срок службы не зависит от числа пусков и достигает 25 000 ч. Лампы с подогревными катодами по способу их пуска делятся на лампы с предварительным прогревом, быстрого и моментального пуска. Как и все другие газоразрядные приборы, лампы с подогревными катодами нельзя присоединять к источнику питания без балластного устройства, ограничивающего ток (рис. 4.4). Лампы с предварительным прогревом нуждаются также в стартере; при пуске такой лампы замыкается стартер, и катоды, соединенные последовательно, подключаются к сети питания, так что по ним проходит ток. После того как катоды разогреются настолько, что могут эмиттировать электроны, стартер автоматически размыкается, и лампа загорается. В благоприятных условиях весь пуск занимает несколько секунд. В лампах быстрого пуска катоды нагреваются постоянно, а разряд возникает при повышении напряжения. Стартеры не требуются, и время пуска значительно меньше, чем у ламп с предварительным прогревом. В лампах моментального пуска не требуется ни прогрева катодов, ни стартера. Просто на катод подается повышенное напряжение, которое вызывает эмиссию электронов и зажигание разряда в лампе.
Достоинства и недостатки: к достоинствам люминесцентных ламп относятся высокая световая отдача (до 77 лм/Вт) и большая долговечность. Недостатки - высокая начальная стоимость лампы и светильника, шум дросселя стартера и мерцание. Хотя перечень недостатков обширнее, достоинства столь велики, что уже к 1952 лампы накаливания в США были вытеснены люминесцентными лампами в качестве основного электрического источника света. Электролюминесцентные лампы. В отличие от люминесцентных ламп (в которых свет испускается при возбуждении люминофора ультрафиолетовым излучением газового разряда), в электролюминесцентных лампах, изобретенных в 1936, электроэнергия преобразуется непосредственно в свет благодаря применению специальных люминофоров. Лампа представляет собой многослойную конструкцию из слоя люминофора (цинк-сульфидного, активированного медью или свинцом) и двух электропроводящих пластин, одна из которых прозрачна. Устройство электролюминесцентных ламп двух типов показано на рис. 4.5. Цвет свечения лампы (синий, зеленый, желтый или розовый) зависит от частоты напряжения питания, а яркость -от частоты и напряжения. Электролюминесцентные лампы пока что не отличаются большой световой отдачей. Для удалённого (дистанционного) освещения поверхностей или объектов предназначены специальные световые приборы, которые называют прожекторами. Прожекторы перераспределяют свет источника внутри малых телесных углов. Типы прожекторов означают следующее: ПЗС - прожектор заливающего света со стеклянным отражателем; ПСМ - прожектор среднего светораспределения с металлическим отражателем; ПФС - прожектор со специальной прожекторной лампой типа ПЖ, позволяющей с помощью специального патрона 1Ф-С51 фокусировать поток лампы; ПЗР-прожекторы с лампами ДРЛ; ПКН - прожекторы с галогенными лампами накаливания. Цифры после букв обозначают диаметр выходного отверстия в см.
|