Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Вычисление суммы функционального ряда






Пусть задан некоторый ряд слагаемых a1(х)+a2(х)+a3(х)+...+an(x) и необходимо найти его сумму. Если слагаемые зависят от некоторого параметра Х и номера n, опреде­ляющего место этого слагаемого в ряде, то такой ряд называется функциональным.

Если слагаемые зависят только от номера, то такой ряд называется число­вым. Обычно функциональные и числовые ряды зада­ются в виде формулы общего члена ряда, которые по методам вычисления можно разбить на три типа:

 

Тип Формулы общего члена ряда
  I  
  II  
  III  

где m, n, k - целые числа;

a, b, c, d - действительные числа.

1. Для вычисления члена ряда типа 1 наиболее удобно исполь­зовать рекур­рентные соотношения, т.е. последующий член ряда находить через предыдущий, что существенно сократит объем вычислительной работы, особенно при вы­числении факто­риалов. Вычисление последующего члена ряда можно представить в виде рекуррентной формулы: А[n+1]=A[n]*G(n, x), где G(n, x)=an+1/an.

При использовании рекуррентных формул необхо­димо определить начальное значение n, c которого выполняются рекуррентные соотно­шения, а, сле­довательно, этим определяются начальные значения (выражения для а и S).

2. Если формула общего члена ряда принадлежит типу II, то це­лесообразнее и эффективнее вычислять каждый член ряда по общей формуле. В за­дачах данного типа необходимо обратить внимание на определение начального значения n и началь­ное значение суммы.

3. Если формула общего члена ряда принадлежит типу III, то целесообразно вычисление текущего члена ряда представить как произведение двух или более со­множителей.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал