Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Кибернетика или управление и связь в животном и машине
(М., 1968) Чтобы подойти к технике связи, нам пришлось бы разработать статистическую теорию количества информации. В этой теории за единицу количества информации принимается количество информации, передаваемое при одном выборе между равновероятными альтернативами. Такая мысль возникла почти одновременно у нескольких авторов, в том числе у статистика Р. А. Фишера, у доктора Шеннона из Белловских телефонных лабораторий и у автора настоящей книги. При этом Фишер исходил из классической статистической теории. Шеннон - из проблемы кодирования информации, автор настоящей книги - из проблемы сообщения и шумов в электрических фильтрах. Следует, однако, отметить, что некоторые мои изыскания в этом направлении связаны с более ранней работой Колмогорова в России, хотя значительная часть моей работы была сделана до того, как я обратился к трудам русской школы. Понятие количества информации совершенно естественно связывается с классическим понятием статистической механики - понятием энтропии. Как количество информации в системе есть мера организованной системы, точно так же энтропия системы есть мера дезорганизованности системы; одно равно другому, взятому с обратным знаком. Эта точка зрения приводит нас к ряду рассуждений относительно второго закона термодинамики и к изучению возможности так называемых " демонов" Максвелла. Вопросы такого рода возникают совершенно независимо при изучении энзимов и других катализаторов, и их рассмотрение существенно для правильного понимания таких основных свойств живой материи, как обмен веществ и размножение. Третье фундаментальное свойство жизни - свойство раздражимости - относится к области теории связи и попадает в группу идей, которые мы только что разбирали. Таким образом, четыре года назад группа ученых, объединившихся вокруг д-ра Розенблюта и меня, уже понимала принципиальное единство ряда задач, в центре которых находились вопросы связи, управления и статистической механики, и притом как в машине, так и в живой ткани. Но наша работа затруднялась отсутствием единства в литературе, где эти задачи трактовались, и отсутствием общей терминологии или хотя бы единого названия для этой области. После продолжительного обсуждения мы пришли к выводу, что вся существующая терминология так или иначе слишком однобока и не может способствовать в надлежащей степени развитию этой области. По примеру других ученых, нам пришлось придумать хотя бы одно искусственное неогреческое выражение для устранения пробела. Было решено назвать всю теорию управления и связи в машинах и живых организмах кибернетикой, от греческого - " кормчий". Выбирая этот термин, мы тем самым признавали, что первой значительной работой по механизмам с обратной связью была статья о регуляторах, опубликованная Максвеллом в 1868 г. Мы хотели также отметить, что судовые рулевые машины были действительно одними из самых первых хорошо разработанных устройств с обратной связью. Приблизительно с 1942 года развитие кибернетики проходило по нескольким направлениям. Сначала идеи совместной статьи Бигелоу, Розенблюта и Винера были изложены д-ром Розенблютом на совещании, проведенном фондом Джосайи Мейси в Нью-Йорке в 1942 г. Совещание было посвящено проблемам центрального торможения в нервной системе. На совещании присутствовал д-р Уоррен Мак-Каллох из Медицинской школы Иллинойского университета, уже давно поддерживающий связь в д-ром Розенблютом и со мною и интересовавшийся изучением коры головного мозга. Примерно в это же время на сцену выступает фактор, который неоднократно появляется в истории кибернетики, - влияние математической логики. Если бы мне пришлось выбирать в анналах истории наук святого - покровителя кибернетики, то я выбрал бы Лейбница. Философия Лейбница концентрируется вокруг двух основных идей, тесно связанных между собой: идеи универсальной символики и идеи логического исчисления. Из этих двух идей возникли современный математический анализ и современная математическая логика. И как в арифметическом исчислении была заложена возможность развития его механизации от абака и арифмометра до современных сверхбыстрых вычислительных машин, так и в исчислении умозаключений Лейбница содержится в зародыше думающая машина. Сам Лейбниц, подобно своему предшественнику Паскалю, интересовался созданием вычислительных машин в металле. Поэтому совсем не удивительно, что тот же самый умственный толчок, который привел к развитию математической логики, одновременно привел к гипотетической или действительной механизации процессов мышления. Всякое математическое доказательство, за которым мы можем следить, выразимо конечным числом символов. Эти символы, правда, могут быть связаны с понятием бесконечности, но связь эта такова, что её можно установить за конечное число шагов. Так, когда в случае математической индукции мы доказываем теорему, зависящую от параметра n, мы доказываем её сначала для n =0 и затем устанавливаем, что случай, когда параметр имеет значение n +1, вытекает из случая, когда параметр имеет значение n. Тем самым мы убеждаемся в правильности теоремы для всех положительных значений параметра n. Более того, число правил действия в нашем дедуктивном механизме должно быть конечным, даже если оно кажется неограниченным из-за ссылки на понятие бесконечности. Ведь и само понятие бесконечности выразимо в конечных терминах. Короче говоря, как номиналистам (Гильберт), так и интуиционистам (Вейль) стало совершенно очевидно, что развитие той или иной математико-логической теории подчиняется ограничениям того же рода, что и работа вычислительной машины.
|