![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
На прямоугольной площадке
Пусть нагрузка р распределена на площадке с размерами b, l (рис. 3.2). Тогда напряжения в любой точке основания можно определить аналогично формуле (3.2), приняв элементарную вертикальную нагрузку в виде dF = p· dx· dy и заменив суммирование интегрированием по площади. В итоге напряжение определяется по простой формуле:
где α – коэффициент рассеяния напряжений с глубиной, зависящий от положения рассматриваемой точки и формы загруженной площадки. Например, для точки на вертикали под центром площадки α есть функция двух безразмерных параметров
Напряжения по вертикали, проходящей через угловую точку, легко определить, используя эту же таблицу. Известно, что напряжение под углом в точке на глубине 2z равно одной четвертой осевого вертикального напряжения на глубине z. То есть, определив по табл. 3.2. значение α для Таблица 3.2
Напряжения в любых точках основания, не лежащих на центральной и угловых вертикалях, определяются по способу угловых точек. После определения напряжений в ряде точек напряженное состояние основания можно наглядно охарактеризовать изолиниями равных напряжений (изобарами, рис. 3.3). Все они проходят через угловые точки площадки, которые здесь (как и точка приложения сосредоточенной нагрузки на рис. 3.1) являются особыми точками.
|