Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
СимволикаСтр 1 из 4Следующая ⇒
Введение
Общество 21в. – общество информационное. Центр тяжести в решении задач переместился от задач вычислительной математики к задачам на дискретных структурах. Математика нужна не как метод расчета, а как метод мышлению средство формирования и организации… Такое владение математикой богатой культуры, понимание важности точных формулировок. В дисциплине мало методов, но много определений и терминов. В основе дискретной математике 4 раздела: 1. Язык дискретной математики; 2. Логические функции и автоматы; 3. Теория алгоритмов; 4. Графы и дискретные экстремальные задачи.
Теория алгоритмов и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.
Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.
Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно сложные задачи (задачи перебора) и неразрешимые задачи.
Мы будем заниматься решением задач реальной размерности с учетом ограниченности временных и емкостных ресурсов ЭВМ.
Множества и операции над ними
Одно из основных понятий математики – множество.
Определение: Множеством называется совокупность, набор предметов, объектов или элементов.
Множество обозначают: M, N ….. m1, m2, mn – элементы множества.
Символика A Î M – принадлежность элемента к множеству; А Ï М – непринадлежность элемента к множеству.
Примеры числовых множеств: 1, 2, 3, … множество натуральных чисел N; …, -2, -1, 0, 1, 2, … - множество целых чисел Z. множество рациональных чисел а. I – множество иррациональных чисел. R – множество действительных чисел. K – множество комплексных чисел.
Множество А называется подмножеством В, если всякий элемент А является элементом В. А Í В – А подмножество В (нестрогое включение)
Множества А и В равны, если их элементы совпадают.
A = B Если А Í В и А ¹ В то А Ì В (строгое включение).
Множества бывают конечные и бесконечные.
|М| - мощность множества (число его элементов).
Конечное множество имеет конечное количество элементов.
Пустое множество не содержит элементов: M = Æ.
Пример: пустое множество:
1) множество действительных корней уравнения x2+1=0 пустое: M = Æ. 2) множество D, сумма углов которого ¹ 1800 пустое: M = Æ.
Если дано множество Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным.
Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики …
Если универсальное множество состоит из n элементов, то число подмножеств = 2n.
Если , состоящее из элементов E, не принадлежащих А, называется дополненным.
Множество можно задать: 1) Списком элементов {a, b, c, d, e}; 2) Интервалом 1< x< 5; 3) Порождающей процедурой: xk=pk sinx=0;
|