Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Булева алгебра характеристических векторов.






Пусть A < = U, A < - P(U) a - характеристический вектор этого подмножества.

 

aA = {a, a2..an)

 

n = [P(U)]

 

ai = 1, если ai < - A (принадлежит).

ai = 0, если ai не принадлежит A.

 

U = {1 2 3 4 5 6 7 8 9}

A = {2 4 6 8}

B = {1 2 7}

aA = {0 1 0 1 0 1 0 1 0}

aB = {1 1 0 0 0 0 1 0 0}

или

aA = 010101010 – скобки не нужны

aA= 110000100

Характеристические векторы размерностью n называются булевыми векторами.

Они располагаются в вершинах n – мерного булева куба.

Номером булевого вектора является число в двоичном представлении, которым он является

1101 – номер.

Два булевых вектора называются соседними, если их координаты отличаются только в одном разряде (если они отличаются только одной координатой).

Совокупность всех булевых векторов размерности n называется булевым кубом размерностью Bn.

 

0 1
Булев куб размерности 1

 

Булев куб размерности 2

 


 

Булев куб размерности 3

 

 

           
     
 
 

 

 


0 – нулевой вектор.

Логическое умножение
I – вектор из одних единиц.

 
 


Логическое сложение
XY

X& Y X V Y
     
     
     
     

 

Отрицание

X = 0 Y = 0

_ _

Х = 1 Y= 1

Для размерности n операции над векторами производятся покоординатно.

Логическая сумма двух векторов – вектор, координаты которого являются логическими суммами соответствующих исходных векторов. Аналогично определено произведение.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал