Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Влияние ионизирующих излучений на организм






Ионизирующие излучения — это любые излучения, взаимодействие которых со средой приводит к образованию электрических зарядов разных знаков, т.е. ионизации атомов и молекул в облучаемом веществе. Ионизирующие излучения подразделяются на электромагнитные и корпуску­лярные.

К электромагнитным относятся рентгеновские лучи, гамма-лучи радиоактивных элементов и тормозное излучение, испускаемое при изменении кинетической энергии заряженных частиц при прохождении через вещество. Эти разновидности излучений имеют ту же природу, что и видимый свет, радиоволны, но с меньшей длиной волны. Электромагнитные излучения не имеют массы покоя и заряда, а потому обладают наибольшей проникающей способностью. Пробег частиц электромагнитных излучений (фотонов) максимально сокращается в таких материалах, как свинец, что использу­ется при конструировании защитных экранов.

Корпускулярное излучение - это ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля. Выделяют две их разновидности. Заряженные частицы: b -частицы (электроны), протоны (ядра водорода), дейтроны (ядра тяжелого водорода — дейтерия), a -частицы (ядра гелия), тяжелые ионы — ядра других элемен­тов, ускоренные до больших энергий. При прохождении через вещество заряженная частица, теряя свою энергию, вызывает ионизацию и возбуждение атомов. К незаря­женным частицам относятся нейтроны, которые не взаимодействуют с электронной оболочкой атома, беспрепятственно проникают в глубь атомов, вступая в реакцию с ядрами. При этом испускаются a -частицы или протоны. Протоны приобретают в среднем половину кинетической энергии нейтронов и вызывают на своем пути ионизацию. Плотность ионизации протонов велика. В веще­ствах, содержащих много атомов водорода (вода, парафин, графит), нейтроны быстро растрачивают свою энергию и замедляются, что используется в целях радиационной защиты.

Различают два вида радиоактивности: естественную (природную) и искусственную. К естественным источникам излучений относятся внутренние (радиоактивные изотопы 40К и 14С, отложившиеся в костях радий и торий, радон, растворенный в тканях организма) и внешние (космические лучи, излучения от радиоактивности в почве, воздухе и строительных материалах).

Общая доза фонового облучения, получаемая человеком в год, на уровне моря составляет примерно 0, 14-0, 7 сЗв. Учитывая, что современные самолеты летают на высотах более 10 км, необходимо кратко охарактеризовать радиационную обстановку в верхних слоях атмосферы и стратосфере. Основной вклад в дозу на этих высотах вносит галактическое космическое излучение (ГКИ). На уровне Земли доза от ГКИ составляет 287 мкГр за год. Считается, что в пределах до 10 км над уровнем моря доза ГКИ через каждые 1, 5 км высоты удваивается. На высотах от 10 до 20 км она изменяется в диапазоне от 1, 8 до 8 сГр в год (или от 50 до 220 мкГр/сут). На высоте около 25 км над уровнем моря ГКИ формирует максимум тканевой дозы — до 8, 64 сГр/год (240 мкГр/сут). Этот максимум объясняется увеличением вклада вторичного излучения (электроны, позитроны, протоны и др.). На высотах 25-30 км вклад вторичного излучения уменьшается и интегральная доза составляет величину порядка 5, 4 сГр/год (150 мкГр/сут).

Наиболее реальную опасность представляют искусственные источники излучений. Совершенствование авиакосмической техники может привести к использованию в будущем бортовых радиоизотопных, ядерно-энергетических и ядерно-силовых устано­вок, являющихся источниками ионизирующих излучений. Возникновение радиационной ситуации возможно при перевозках радионуклидов, а также еще в трех особых формах контакта с источниками облучения: взрыв ядерного оружия, аварийный выброс технологических продуктов атомного предприятия в окружающую среду и местное выпадение радиоактивных веществ, сопутствующее первым двум обстоятель­ствам.

Для оценки биологического эффекта воздействия излучения произвольного состава введено понятие эквивалентной дозы с единицей измерения в СИ — зиверт (Зв). Зиверт - единица эквивалентной дозы любого вида излучения в биологической ткани, которое создает такой же биологический эффект, как и поглощенная доза в 1 Гр образцового рентгеновского или g -излучения (энергия 100-1000 кэВ).

При одной и той же поглощенной дозе биологический эффект от воздействия различных видов излучения существенно различается. В связи с этим для прогнози­рования биологического эффекта в поглощенную дозу излучения необходимо вносить поправочный коэффициент на его вид: этот коэффициент характеризует относитель­ную биологическую эффективность (ОБЭ).

Пользуясь понятием о дозе излучения, ОБЭ можно определить как отношение биологически равноэффективных доз стандартного и сравниваемого излучений:

 

    ОБЭ = Доза рентгеновского или g-излучения в Гр, при которой наблюдается определенный биологический эффект
Доза исследуемого излучения в Гр, при которой наблюдается такой же эффект  

Биологическую эффективность ионизирующего излучения определяют в первую очередь линейной плотностью ионизации (ЛПИ), создаваемой этим излучением, т.е. количеством пар ионов, образуемых на единице пути ионизирующей частицы в веществе (ткани). Однако биологическую эффективность правильнее связывать не с ЛПИ, а с величиной энергии, передаваемой ионизирующей частицей ткани на единицу пути. Эта величина называется линейной передачей энергии (ЛПЭ). Значения ЛПИ, ЛПЭ и ОБЭ связаны между собой.

Регламентированные значения ОБЭ, установленные для контроля степени радиаци­онной опасности в области малых величин доз при хроническом облучении, называют коэффициентом качества излучения Q.

Кроме единиц дозы излучения, в медицинской практике используют единицы активности радиоактивных изотопов. Единица активности в СИ — беккерель (Бк), равная одному распаду в секунду (расп/с).

Оценку дозы производят различными физическими и химическими методами. В настоящее время широко используют ионизационный метод, т.е. измеряется электри­ческий ток, возникающий вследствие ионизации газовых смесей в специальных камерах с тканеэквивалентными стенками. Также применяется метод измерения дозы с использованием фотопленок и ядерных фотоэмульсий. Применение ядерных фотоэмульсий позволяет, кроме того, проанализировать состав падающего на тело излучения.

Все ткани организма способны поглощать энергию излучения, которая преобразуется в энергию химических реакций или тепло. Известно, что в тканях содержится 60-80% воды. Следовательно, большая часть энергии излучения поглощается водой, а меньшая — растворенными в ней вещества­ми. Поэтому при облучении в организме появляются свободные радикалы — продукты разложения (радиолиза) воды, которые в химическом отношении очень активны, могут вступать в реакцию с белковыми и другими молекулами. Полагают, что в таких «плотноупакованных» структурах, как хромосомы, преобладают повреждения, обус­ловленные прямым действием излучения, тогда как в растворах и высокогидратиро-ванных системах существенную роль играют также продукты радиолиза воды.

При воздействии очень больших доз в результате первичного действия ионизиру­ющего излучения наблюдаются изменения в любых биомолекулах. При умеренных же дозах лучевого воздействия первично страдают в основном только высокомолекуляр­ные органические соединения: нуклеиновые кислоты, белки, липопротеиды и полимер­ные соединения углеводов. Нуклеиновые кислоты обладают чрезвычайно высокой радиочувствительностью. При прямом попадании достаточно 1-3 актов ионизации, чтобы молекула ДНК вследствие разрыва водородных связей распалась на две части и утратила свою биологическую активность. При воздействии ионизирующего излуче­ния в белках происходят структурные изменения, приводящие к потере ферментатив­ной и иммунной активности.

В результате этих процессов, протекающих практически мгновенно, образуются новые химические соединения (радиотоксины), несвойственные организму в норме. Все это приводит к нарушению сложных биохимических процессов обмена веществ и жизнедеятельности клеток и тканей, т.е. к развитию лучевой болезни.

Проблема радиочувствительности клеток, тканей, организмов занимает централь­ное место в радиобиологии. Наиболее чувствительны к этому фактору малодифферен­цированные, молодые и растущие клетки. Характеристикой радиочувствительности биообъектов является величина дозы облучения, вызывающей гибель 50% объектов. У человека среднелетальная доза равна 4+1 Гр. Ввиду различной радиочувствитель­ности органов и тканевых систем существует строгая зависимость между поглощен­ной дозой в организме и средней продолжительностью жизни биологических объектов. Эти три характерных дозных участка кривой отражают основные клинические ради­ационные синдромы (формы лучевой болезни): костномозговой (1-10 Гр), желудочно-кишечный (10-50 Гр) и церебральный (более 50 Гр), развивающиеся вследствие необратимого поражения соответствующих критических систем организма: кроветвор­ной, кишечника и ЦНС.

Критический орган - это орган, ткань или часть тела, которая первой выходит из строя в конкретном диапазоне доз и приводит организм к гибели, а в гигиеническом плане причиняет наибольший ущерб здоровью человека или его потомству.

Костномозговая форма лучевого поражения клинически может протекать в виде острой лучевой реакции и острой лучевой болезни. Эта форма возникает в результате однократного, общего относительно равномерного облучения, когда критической явля­ется система кроветворения и в первую очередь костный мозг.

Острая лучевая реакция — это наиболее легкая степень тяжести острого лучевого поражения организма. Она наблюдается при небольших дозах облучения (порядка несколько десятых Гр). Самочувствие остается удовлетворительным; какие-либо вы­раженные клинические проявления у пораженных отсутствуют. При исследовании крови находят умеренно выраженное уменьшение содержания лимфоцитов, гранулоцитов и тромбоцитов. Изменения в целом носят преходящий характер и через 3-4 недели исчезают. Смертельные исходы отсутствуют.

Острая лучевая болезнь (ОЛБ) является более тяжелым поражением организма. Она возникает при относительно больших дозах облучения — порядка нескольких грэй. Характерной чертой ОЛБ является волнообразность клинического течения. Предлагается различать три периода в течении ОЛБ: формирование, восстановление и период исходов и последствий

Период формирования ОЛБ в свою очередь четко разделяется на 4 фазы.

1. Фаза первичной общей реакции — наиболее ранний симптомокомплекс радиа­ционного поражения, возникающий в первые часы после облучения и характеризую­щийся следующими симптомами: общая слабость, утомляемость, апатия, головокруже­ние, головная боль, парестезии конечностей, нарушение сна, тошнота, рвота, понос. Перечисленные симптомы являются «поведенчески значимыми». Однако заранее невозможно однозначно прогнозировать, какое влияние окажут со­матические и психосоматические эффекты облучения на операторскую деятельность, поскольку высокий уровень тренировки и мотивации позволяет выполнять сложные задачи управления в различных экстремальных условиях.

2. Фаза кажущегося клинического благополучия (скрытая, или латентная). Чем короче срок такого состояния, тем, как правило, тяжелее степень радиационного поражения. Несмотря на отсутствие видимых клинических проявлений, отмечаются функциональные нарушения в ЦНС, а также в сердечно-сосудистой, кроветворной и пищеварительной системах. С первых минут и часов после облучения обнару­живается лимфоцитопения, быстро снижается число нейтрофилов, затем тромбоцитов и позже эритроцитов. Продолжительный начальный лейкоцитоз (2-3 дня после облучения) является, как правило, благоприятным прогностическим признаком.

3. Фаза выраженных клинических проявлений (разгар заболевания) характеризу­ется появлением всего симптомокомплекса лучевой болезни.

4. Фаза непосредственного восстановления, переходящая в период восстановления. Процессы восстановления в облученном организме характеризуются периодом полу­восстановления, т.е. временем, необходимым для восстановления организма от луче­вого поражения на 50%. У человека, согласно расчетам, он составляет 25-45 дней, считая от момента облучения. В среднем его принимают равным 28 суток. Восстанов­ление происходит не во всех случаях облучения. Предлагается различать 4 прогно­стические категории: 1) выживание невозможно, если доза облучения основной массы тканей тела достигает 6 Гр, несмотря на отличный медицинский уход и самую современную терапию; 2) выживание возможно при дозах 2-4, 5 Гр, несмотря на тяжелое поражение, которое требует своевременного и квалифицированного печения; 3) выживание вполне вероятно (1-2 Гр); 4) выживание, несомненно (при дозах менее 1 Гр), а имеющаяся клиническая симптоматика (только гематологические сдвиги) не требует медицинского вмешательства.

Период исходов и последствий облучения проявляется в изменениях крови, угне­тении механизмов иммунитета, нарушении обмена веществ, а далее — укорочении продолжительности жизни (раннее старение), увеличении вероятности развития лей­коза и злокачественных новообразований, помутнения хрусталика (лучевая катарак­та), нарушении функции сердечно-сосудистой системы, вегетативных расстройствах, а также в генетических изменениях.

При кишечном варианте лучевой болезни в результате массовой гибели клеток эпителия тонкого кишечника развиваются тяжелые нарушения в желудочно-кишечном тракте. Резко нарушаются процессы всасывания и экскреции веществ. Организм теряет много жидкости, наступает его обезвоживание. Слизистая оболочка изъязвля­ется, иногда появляются перфорации, развиваются кишечные кровотечения, являющи­еся нередко причиной смерти пораженных. Большую роль играют при этой форме поражения также инфекция и интоксикация организма продуктами жизнедеятельности кишечной микрофлоры. Глубокие патологические изменения в кроветворной ткани не успевают развиться, так как пораженные умирают в ближайшие 6-9 дней после облучения. Однако, несмотря на быстротечность заболевания, и в этом случае можно отметить короткий период мнимого благополучия, длящийся от 1 до 2 суток.

Церебральная форма лучевого поражения характеризуется чрезвычайно быстрым и тяжелым течением. Продолжительность жизни пораженного измеряется часами. Уже вскоре после облучения появляются расстройство равновесия и координации движений, тонические и клонические судороги. Во время приступа останавливает­ся дыхание. Может наступить паралич дыхательного центра. Кишечная и церебральная формы лучевой болезни клинически протекают в виде острейшей лучевой болезни.

При попадании радиоактивных веществ на открытые участки тела, одежду, снаряже­ние основная задача сводится к быстрому их удалению, чтобы воспрепятствовать попаданию радионуклидов в организм. Если радиоактивное вещество все же проникло внутрь, то пострадавшему сразу вводят адсорбенты в желудок, промывают его, дают рвотные, слабительные, отхаркивающие средства и внутривенно-компленсионы (напри­мер, динатриевая соль этилендиаминотетрауксусной кислоты — ЭДТУ), способные проч­но связывать радиоактивные вещества и препятствовать отложению их в тканях.

Основным требованием при лечении ОЛБ является комплексность терапевтичес­ких мероприятий, при этом используют как патогенетические, так и симптоматичес­кие средства.

Описанные биологические эффекты могут значительно модифицироваться условия­ми облучения: время, локализация, сопутствующие факторы.

Если мощность дозы очень мала, то даже ежедневные облучения в течение всей жизни человека не смогут оказать заметно выраженного поражающего действия. Таким образом, фактор времени крайне значим в биологическом эффекте излучения. Это еще раз свидетельствует о том, что организм обладает способностью восстанавливать основную часть радиационного поражения. Многократное прерывистое (фракционированное) воздействие излучения также приводит к значительному сниже­нию поражающего действия. Неравномерные лучевые воздействия, которые встречают­ся на практике в подавляющем большинстве случаев, переносятся в целом значительно легче, чем «классические» общие равномерные облучения, рассмотренные нами ранее.

В настоящее время разработаны эффективные меры и правила защиты людей, работающих с источниками ионизирующих излучений. Профилактика радиационных поражений осуществляется путем проведения комплекса санитарно-гигиенических, санитарно-технических и специальных медицинских мероприятий.

Средства противохимической защиты (защитная одежда, противогазы или респира­торы и т.п.) оказывают известный защитный эффект от воздействия радиоактивных веществ. В случаях, когда неизбежно облучение в дозах, превышающих ПДД, профи­лактика осуществляется методом фармакохимической защиты.

В результате многочисленных радиобиологических исследований обнаружены ве­щества, которые при введении в организм за определенное время до облучения снижают в той или иной степени радиационное поражение. Такие вещества называ­ются радиозащитными или радиопротекторами. Большинство изученных в настоящее время радиопротекторов оказывают положительный эффект при введении их в орга­низм сравнительно за короткое время до облучения. Они улучшают течение лучевой болезни, ускоряют восстановительные процессы, повышают эффективность терапии и увеличивают выживаемость.

Кроме радиопротекторов, должное внимание следует уделять биологической защи­те, которая осуществляется с помощью адаптогенов. Эти вещества не обладают специфическим действием, но зато повышают общую сопротивляемость организма к различным неблагоприятным факторам, в том числе и к ионизирующим излучениям. Адаптогены назначают многократно за несколько дней или недель до облучения. К ним следует отнести препараты элеутерококка, женьшеня, лимонника китайского, витаминно-аминокислотные комплексы, некоторые микроэлементы, АТФ, дибазол, гутимин и др. Механизм действия этих препаратов необычайно широк. В понятие биологической защиты входят и такие мероприятия, как акклиматизация к гипоксии, вакцинация, хорошее питание, занятие физической культурой и т.д. Все это, безусловно, повышает устойчивость организма. Злоупотребление алкоголем, никотином, наркотиками снижает устойчивость организма к облучению.

Эффективным способом противорадиационной защиты является локальное экрани­рование критических органов и систем.

 

Часть 4. Система «человек-среда»


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал