![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теплопроводность через однослойную плоскую стенку
Дифференциальное уравнение теплопроводности позволяет определить температуру в зависимости от времени и координат в любой точке поля. Для любого конкретного случая к нему надо присоединить необходимые краевые условия.
Но при принятых условиях первые и вторые производные от (по y иz также равны нулю: поэтому уравнение теплопроводности можно написать в следующем виде:
Интегрируя уравнение (23-1), находим После вторичного интегрирования получаем При постоянном коэффициенте теплопроводности это уравнение прямой линии. Следовательно, закон изменения температуры при прохождении теплоты через плоскую стенку будет линейным. Найдем постоянные интегрирования А и В. При х = 0 температура t = t'cr — B; при х = δ температура t = t" cr — Аδ +tст, откуда Плотность теплового потока найдем из уравнения Фурье (22-7) или
Зная удельный тепловой поток, можно вычислить общее количество теплоты, которое передается через поверхность стенки F за время τ:
Количество теплоты, которое передается теплопроводностью через плоскую стенку, прямо пропорционально коэффициенту теплопроводности стенки К, ее площади F, промежутку времени т, разности температур на наружных поверхностях стенки (t'ст — t''ст) и обратно пропорционально толщине стенки δ. Тепловой поток зависит не от абсолютного значения температур, а от их разности t'ст — t''ст = Δ t наtзываемой температурным напором. Полученное уравнение (23-2) является справедливым для случая, когда коэффициент теплопроводности является постоянной величиной. В действительности коэффициент теплопроводности реальных тел зависит от температуры и закон изменения температур будет выражаться кривой линией. Если коэффициент теплопроводности зависит от температуры в незначительной степени, то на практике закон изменения температур считают линейным. Уравнение (23-2) можно получить непосредственно из закона Фурье (22-6), считая, что температура изменяется только в направлении оси х: Разделив переменные, получаем Интегрируя последнее уравнение при условии Q = const, находим Постоянную интегрирования С найдем из граничных условий: при х = 0 температура при х = δ температура Введем в уравнение (23-2) поправки па зависимость λ от t, считая эту зависимость линейной:
В этом случае, подставив в уравнение Фурье вместо К его значение из формулы (а), получаем
Разделив переменные и интегрируя в пределах от х = 0 до x = δ и в интервале температур от t'ст до t''ст, получаем
Полученное уравнение (23-4) позволяет определить плотность теплового потока при переменном коэффициенте теплопроводности. В этом уравнении множитель является среднеинтегралыюй величиной коэффициента теплопроводности. В уравнении (23-2) было принято λ, =const и равным среднему значению λ ср. Поэтому, сравнивая уравнения (23-2) и (23-4), получаем
Следовательно, если λ ср определяется при среднеинтегральной температуре то формулы (23-2) и (23-4) равнозначны. При этом плотность теплового потока может определяться из уравнения
Интегрируя уравнение (б) в пределах от х — О до любой текущей координаты х и в интервале температур от t'ст ДО tx, получим уравнение температурного поля
Из этого уравнения следует, что температура внутри стенки изменяется по кривой. Если коэффициент b отрицателен, то кривая будет направлена выпуклостью вниз; если b положителен, то выпуклостью вверх.
|