Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Географическая оболочка и ее особенности
Геосферы Земли - более или менее концентрические слои, охватывающие всю Землю и обладающие присущими только им характерными физическими, структурными, физико-химическими, химическими и биологическими свойствами. Геосферы подразделяются на внешние и внутренние. К внешним относятся атмосфера, гидросфера, земная кора. К внутренним геосферам относятся мантия и ядро. Земная кора, атмосфера и гидросфера входят в состав биосферы — сложной прерывистой оболочки Земли, являющейся средой обитания биоты — живого вещества планеты. Пространство, в котором взаимопроникают и взаимодействуют литосфера, гидросфера и атмосфера, носит название географической оболочки. Географическая оболочка представляет собой единую материальную систему, обладающую рядом лишь ей присущих особенностей: в ней лучистая энергия Солнца превращается в тепловую; вода находится одновременно в трех состояниях - жидком, твердом и газообразном; в ней возникли и развиваются растения и животные, формируются почвы, образуются осадочные горные породы, на определенном этапе развития появился человек, сформировалось человеческое общество, постоянно взаимодействующее с окружающей ее природой. Географическая оболочка развивается и имеет свои закономерности в развитии: 1. Целостность - изменение одного ее компонента неизбежно вызывает изменение всех остальных. 2. Круговорот веществ и энергии. Круговорот веществ обеспечивает многократность одних и тех же процессов и явлений при ограниченном объеме исходного вещества. 3. Ритмичность - повторяемость сходных явлений во времени. Существуют ритмы разной продолжительности - суточные, годовые (сезонные), внутривековые. 4. Зональность - закономерное изменение всех компонентов географической оболочки и самой оболочки по направлению от экватора к полюсам. Основные причины зональности - форма Земли и положение ее относительно Солнца, а предпосылка - падение солнечных лучей на поверхность под углом, постепенно уменьшающимся в обе стороны от экватора. Дифференциация географической оболочки по зональным признакам выражается прежде всего в делении на географические пояса и зоны и высотные пояса и зоны. В 80-е годы XX в. в геологическую науку было введено понятие «геологическая среда», которая, по мнению ряда ученых, представляет собой часть географической оболочки. Она соответствует самой верхней части земной коры и выступает как минеральная основа биосферы. Автор этого термина Е.М.Сергеев (1979) и его последователи под геологической средой понимают верхнюю часть литосферы, находящуюся под воздействием инженерно-хозяйственной деятельности человека. Верхней границей геологической среды в таком понимании является поверхность рельефа, характерная для конкретной территории. Нижняя граница геологической среды зависит от глубины проникновения человека в толщу земной коры в ходе различных видов его деятельности. Согласно другой точке зрения, понятие «геологическая среда» должно рассматриваться в более широком плане: геологическая среда — это то пространство, где совершаются геологические процессы. Независимо от места своего возникновения (в глубоких недрах или на земной поверхности) эндогенные и экзогенные процессы, взаимодействующие между собой и с внешними геосферами, совершают в огромнейших масштабах разнообразные геологические преобразования. При определенных условиях в геологической среде возникает вся масса горных пород и минералов, существуют органические сообщества, действуют геологические силы, преобразующие лик Земли, возникают катастрофические, стихийные геологические явления.
7.2 Атмосфера: строение, происхождение, экологические функции
Атмосфера — это газовая оболочка, не имеющая четко выраженной верхней границы и существующая благодаря гравитационному притяжению Земли. Состав у поверхности Земли следующий: азот — 78, 1 %, кислород — 20, 95 %, аргон — 0, 93 % и в незначительных долях процента углекислый газ, водород, гелий, неон и другие газы. На высоте 20—25 км расположен слой озона, который предохраняет живые организмы от коротковолнового (ультрафиолетового) солнечного излучения, пагубно воздействующего на живые организмы. По резкой смене температур в атмосфере выделяют несколько слоев (сфер). Границы между ними носят название пауз (тропопауза, стратопауза, мезопауза). В самом нижнем слое — тропосфере — температура по мере повышения высоты от земной поверхности падает до -55 °С у полюса и -75 °С у экватора. В ней сосредоточено 4/5 всей массы атмосферы. Она богата азотом и кислородом, насыщена парами воды и углекислым газом. Здесь протекают важные погодные процессы и образуются облака. Температура в тропосфере падает с высотой в среднем на 6 °С на каждый километр. Тропосфера простирается до высоты 12—15 км и отделяется от стратосферы тропопаузой. В стратосфере происходит резкое повышение температуры, достигающее 0 °С на высоте 55 км, где проходит стратопауза. В стратосфере количество азота и кислорода уменьшается, а содержание водорода, гелия и других легких газов увеличивается. В ней располагается озоновый слой. Следующий слой атмосферы — мезосфера — располагается в интервале 55 —95 км над поверхностью Земли. В ней продолжается падение температуры с увеличением высоты и достигает -70, -80 °С в мезопаузе. В термосфере температура повышается, достигая на высоте 400 км 1200 0С. Ее нередко называют ионосферой, так как молекулы газов ионизированы космическим излучением, т. е. лишены верхних электронов и поэтому обладают положительным зарядом. Как и любой ионизированный газ, воздух в термосфере хорошо проводит электричество. К тому же термосфера обладает замечательным свойством — отражает радиоволны, что делает возможной дальнюю связь на Земле. Выше термосферы располагается экзосфера, представляющая собой переходную область между атмосферой и межпланетным пространством. Характерными ее особенностями являются преобладание газов в атомарном состоянии и очень малая плотность. Здесь наиболее легкие газы покидают атмосферу и рассеиваются в космическом пространстве. Современная атмосфера представляет собой результат длительного эволюционного развития. Она возникла в результате совместных действий геологических факторов и жизнедеятельности организмов. Первичная атмосфера (протоатмосфера) на самой ранней протопланетной стадии, т.е. старше чем 4, 2 млрд. лет, могла состоять из смеси метана, аммиака и углекислого газа. В результате дегазации мантии и протекающих на земной поверхности активных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СО2 и СО, серы и ее соединений, а также сильных галогенных кислот — НСl, HF, HI и борной кислоты, которые дополнялись находившимися в атмосфере метаном, аммиаком, водородом, аргоном и некоторыми другими благородными газами. Эта первичная атмосфера была чрезвычайно тонкой. С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнечных лучей стал трансформироваться. Привело это к разложению метана на водород и углекислоту, аммиака — на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, который медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности синезеленых водорослей в процессе фотосинтеза стал вырабатываться кислород, который, однако, в начале в основном расходовался на окисление атмосферных газов, а затем горных пород. При этом аммиак, окислившийся до молекулярного азота, стал интенсивно накапливаться в атмосфере. Метан и оксид углерода окислялись до углекислоты. Сера и сероводород окислялись до SO2 и SO3, которые вследствие своей высокой подвижности и легкости быстро удалились из атмосферы. Таким образом, атмосфера из восстановительной, какой она была в архее и раннем протерозое, постепенно превращалась в окислительную. Углекислый газ поступал в атмосферу как вследствие окисления метана, так и в результате дегазации мантии и выветривания горных пород. Значительная часть углекислого газа из атмосферы растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформированы мощнейшие толщи хемогенных и органогенных карбонатов. Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходовался на окислительные процессы. Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Третьим – процессы фотосинтеза. Стабилизация содержания кислорода в атмосфере произошла с того момента, когда растения вышли на сушу, — примерно 450 млн. лет назад. Экологические функции атмосферы заключаются в обеспечении условий: - жизнедеятельности организмов; - функционирования гидросферы, литосферы и почвы; - формирования климата; - возникновения экстремальных явлений и стихийных бедствий; - развития человечества. Наряду с экологическими атмосфера обладает и геологическими функциями. Геологическая роль атмосферы заключается в том, что ее строение, элементарный состав, состояние и взаимодействие с литосферой, почвенным покровом, гидросферой, равно как и протекающие в ней процессы, определяются скоростями и масштабностью воздействия на поверхностную часть литосферы физико-химических факторов, которые определяют интенсивность и скорость воздействия агентов выветривания, эрозии, транспортировки и аккумуляции осадочного материала. Атмосфера — важный источник веществ для формирования почв, горных пород и полезных ископаемых. Атмосфера не только является преобразователем солнечной энергии, но и одновременно служит источником строительного материала (оксида углерода) для живых организмов. 7.3 Гидросфера: строение, происхождение, экологические функции
Под гидросферой подразумевают поверхностную оболочку, состоящую из воды морей и океанов, поверхностных водоемов суши, временных и постоянных водотоков, твердой воды в виде снега и льда. Наряду с поверхностной существует и подземная гидросфера, к которой относятся грунтовые и подземные, в том числе артезианские воды. Океаны и моря покрывают почти 71 % поверхности Земли, а вместе с водными объектами суши, к которым относятся ледники, озера, водохранилища, болота, пруды, водой покрыто почти 3/4 земной поверхности. Высокая теплоемкость воды и значительная потенциальная энергия ее многочисленных фазовых переходов вместе с огромной площадью зеркала воды имеют большое значение для теплового и водного режимов Земли. Гидросфера вместе с атмосферой являются решающим фактором в почвообразовании и формировании растительного покрова Земли и, следовательно, обусловливают ландшафтный облик планеты. Мировой океан является глобальным аккумулятором теплоты. Он трансформирует солнечную энергию, аккумулирует ее, а при необходимости, медленно охлаждаясь, отдает часть теплоты в атмосферу. Таким образом, гидросфера играет важнейшую и весьма неоднозначную роль в терморегуляции планеты. Экологические функции Мирового океана вытекают из его взаимодействия с атмосферой и верхней частью литосферы, которое приводит к широкому газообмену, способствует возникновению климата и погодных условий, обусловливает распределение температуры, солености и плотности Мирового океана, вызывает поверхностную и глубинную гидродинамику. Все это играет ведущую роль в распределении биоты и обусловливает жизнедеятельность организмов, транспортировку и аккумуляцию вещества. Геологическая роль гидросферы состоит в том, что она как один из главнейших экзогенных факторов преобразует земную поверхность, участвует в формировании рельефа, переносит во взвешенном и растворенном состоянии вещества и химические соединения и участвует в аккумуляции осадочного материала. Экологические функции гидросферы обеспечиваются непрерывной циркуляцией воды. Ее перемещение происходит в результате механического движения - потоки воды в реках, течения в толще океана; в результате изменения фазового состава - вода испаряется и попадает в атмосферу посредством диффузионного и конвективного потоков. Последние характерны для почв и горных пород. В северных районах наблюдается очень редкий способ передвижения воды путем возгонки. Снег (твердая фаза воды), испаряясь, сразу превращается в пар и попадает в атмосферу. Таким образом, происходит непрерывный замкнутый процесс циркуляции воды на Земле, именуемый круговоротом. Различают малый, большой и входящий в него внутриматериковый круговороты. Вода, испарившаяся с поверхности океана, большей частью конденсируется и возвращается обратно в виде атмосферных осадков (малый, или океанический, круговорот) и частично переносится воздушными течениями на сушу. Атмосферные осадки, выпавшие на сушу, просачиваясь в почву и зону аэрации, создают запасы почвенной влаги. Проникшие глубже атмосферные осадки образуют подземные воды: грунтовые, пластовые и воды глубоких горизонтов. Часть атмосферных осадков стекает по земной поверхности, образуя ручьи и реки, а остальная часть снова испаряется. В конце концов, вода, принесенная воздушными течениями на сушу, снова достигает океана, завершая большой круговорот воды на земном шаре. Из большого круговорота может быть выделен еще местный, или внутриматериковый, круговорот, при котором, вода, испарившаяся с поверхности суши, вновь попадает на сушу в виде атмосферных осадков. Представления о происхождении гидросферы основываются на существовании следующих источников воды: дегазации расплавленной магмы, выбросов воды в виде пара вулканами и «черными» курильщиками. Многое зависело от состава первичного вещества, которое образовало праЗемлю. Среди веществ, сложивших нашу планету, помимо вещества типа метеоритного должно было быть и вещество типа кометного, т.е. содержащее лед, металлы и органику. Другими словами, первичная Земля уже имела достаточное количество воды в виде льда. Чисто кометный вариант происхождения океанов пока не имеет достаточных оснований, так как в существующем океане слишком много следов дегазации недр Земли.
|