Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Функциональное тестирование






 

Одним из способов проверки программ является тестирование с управлением по данным или по принципу «черного ящика». В этом случае программа рассматривается как «черный ящик», и целью тестирования является выяснение обстоятельств, в которых поведение программы не соответствует спецификации.

 

Для обнаружения всех ошибок в программе, используя управление по данным, необходимо выполнить исчерпывающее тестирование, т. е. тестирование на всех возможных наборах данных. Для тех же программ, где исполнение команды зависит от предшествующих ей событий, необходимо проверить и все возможные последовательности. Очевидно, что проведение исчерпывающего тестирования для подавляющего большинства случаев невозможно. Поэтому обычно выполняют «разумное» или «приемлемое» тестирование, которое ограничивается прогонами программы на небольшом подмножестве всех возможных входных данных. Этот вариант не дает гарантии отсутствия отклонений от спецификаций.

Правильно выбранный тест должен уменьшать, причем более чем на единицу, число других тестов, которые должны быть разработаны для обеспечения требуемого качества программного обеспечения.


При функциональном тестировании различают следующие методы формирования тестовых наборов:

 

• эквивалентное разбиение;

• анализ граничных значений;

• анализ причинно-следственных связей;

• предположение об ошибке.

Эквивалентное разбиение. Метод эквивалентного разбиения заключается в следующем.Область всех возможных наборов входных данных программы по каждому параметру разбивают на конечное число групп - классов эквивалентности. Наборы данных такого класса объединяют по принципу обнаружения одних и тех же ошибок: если набор какого-либо класса обнаруживает некоторую ошибку, то предполагается, что все другие тесты этого класса эквивалентности тоже обнаружат эту ошибку и наоборот.

Разработку тестов методом эквивалентного разбиения осуществляют в два этапа: на первом выделяют классы эквивалентности, а на втором - формируют тесты.

Выделение классов эквивалентности является эвристическим процессом, однако целесообразным считают выделять в отдельные классы эквивалентности наборы, содержащие допустимые и недопустимые значения некоторого параметра. При этом существует ряд правил:

• если некоторый параметр х может принимать значения в интервале [1, 999], то выделяют один правильный класс 1 ≤ х ≤ 999 и два неправильных: х < I их> 999;

• если входное условие определяет диапазон значений порядкового типа, например, «в автомобиле могут ехать от одного до шести человек», то определяется один правильный класс эквивалентности и два неправильных: ни одного и более шести человек;

• если входное условие описывает множество входных значений и есть основания полагать, что каждое значение программист трактует особо, например, «типы графических файлов: bmp, jpeg, vsd», то определяют правильный класс эквивалентности для каждого значения и один неправильный

класс, например, txt;

• если входное условие описывает ситуацию «должно быть», например, «первым символом идентификатора должна быть буква», то определяется один правильный класс эквивалентности (первый символ -буква) и один неправильный (первый символ - не буква);

 

• если есть основание считать, что различные элементы класса эквивалентности трактуются программой неодинаково, то данный класс разбивается на меньшие классы эквивалентности.

Таким образом, классы эквивалентности выделяют, перебирая ограничения, установленные для каждого входного значения в техническом задании или при уточнении спецификации. Каждое ограничение разбивают на две или более групп. При этом используют специальные бланки - таблицы классов эквивалентности:

 

Ограничение на Правильные классы Неправильные классы
значение параметра эквивалентности эквивалентности
     

 

Правильные классы включают правильные данные, неправильные классы - неправильные данные. Для правильных и неправильных классов тесты проектируют отдельно. При построении тестов правильных классов учитывают, что каждый тест должен проверять по возможности максимальное количество различных входных условий. Такой подход позволяет минимизировать общее число необходимых тестов. Для каждого неправильного класса эквивалентности формируют свой тест. Последнее обусловлено тем, что определенные проверки с ошибочными входами скрывают или заменяют другие проверки с ошибочными входами.

 

Анализ граничных значений. Граничные значения -это значения на границах классовэквивалентности входных значений или около них. Анализ показывает, что в этих местах резко увеличивается возможность обнаружения ошибок. Например, если в программе анализа вида


треугольника было записано А + В ≥ С вместо А + В > С, то задание граничных значений приве-дет к ошибке: линия будет отнесена к одному из видов треугольника.

 

Применение метода анализа граничных значений требует определенной степени творчества и специализации в рассматриваемой проблеме. Тем не менее существует несколько общих правил для применения этого метода:

• если входное условие описывает область значений, то следует построить тесты для границ области и тесты с неправильными входными данными для ситуаций незначительного выхода за границы области, например, если описана область [-1.0, +1.0], то должны быть сгенерированы тесты: -1.0, + 1.0, -1.001 и+1.001;

• если входное условие удовлетворяет дискретному ряду значений, то следует построить тесты для минимального и максимального значений и тесты, содержащие значения большие и меньшие этих двух значений, например, если входной файл может содержать от 1 до 255 записей, то следует проверить О, 1, 255 и 256 записей;

• если существуют ограничения выходных значений, то целесообразно аналогично тестировать и их: конечно не всегда можно получить результат вне выходной области, но тем не менее стоит рассмотреть эту возможность;

• если некоторое входное или выходное значение программы является упорядоченным множеством, например, это последовательный файл, линейный список или таблица, то следует сосредоточить внимание на первом и последнем элементах этого множества.

Помимо указанных граничных значений, целесообразно поискать другие.

Анализ граничных значений, если он применен правильно, является одним из наиболее полезных методов проектирования тестов. Однако следует помнить, что граничные значения могут быть едва уловимы и определение их связано с большими трудностями, что является недостатком этого метода.

Оба описанных метода основаны на исследовании входных данных. Они не позволяют проверять результаты, получаемые при различных сочетаниях данных. Для построения тестов, проверяющих сочетания данных, применяют методы, использующие булеву алгебру.

Анализ причинно-следственных связей. Анализ причинно-следственных связей позволяетсистемно выбирать высокорезультативные тесты. Метод использует алгебру логики и оперирует понятиями «причина» и «следствие». Причиной в данном случае называют отдельное входное условие или класс эквивалентности. Следствием - выходное условие или преобразование системы. Идея метода заключается в отнесении всех следствий к причинам, т. е. в уточнении причинно-следственных связей. Данный метод дает полезный побочный эффект, позволяя обнаруживать неполноту и неоднозначность исходных спецификаций.

 

Построение тестов осуществляют в несколько этапов. Сначала, поскольку таблицы причинно-следственных связей при применении метода к большим спецификациям становятся громоздкими, спецификации разбивают на «рабочие» участки, стараясь по возможности выделять в отдельные таблицы независимые группы причинно-следственных связей. Затем в спецификации определяют множество причин и следствий.

Далее на основе анализа семантического (смыслового) содержания спецификации строят таблицу истинности, в которой каждой возможной комбинации причин ставится в соответствие следствие. При этом целесообразно истину обозначать «I», ложь - «О», а для обозначения безразличных состояний условий применять обозначение «X», которое предполагает произволь-ное значение условия (0 или 1). Таблицу сопровождают примечаниями, задающими ограничения

и описывающими комбинации причин и/или следствий. которые являются невозможными из-за синтаксических или внешних ограничений. При необходимости аналогично строится таблица истинности для класса эквивалентности.

И, наконец, каждую строку таблицы преобразуют в тест. При этом рекомендуется по возможности совмещать тесты из независимых таблиц.

Данный метод позволяет строить высокорезультативные тесты и обнаруживать неполноту и неоднозначность исходных спецификаций. Его недостатком является неадекватное исследование граничных значений.


Предположение об ошибке. Часто программист с большим опытом находит ошибки, «неприменяя никаких методов». На самом деле он подсознательно использует метод «предположение об ошибке».

 

Процедура метода предположения об ошибке в значительной степени основана на интуиции. Основная его идея заключается в том, чтобы перечислить в некотором списке возможные ошибки или ситуации, в которых они могут появиться, а затем на основе этого списка составить тесты. Другими словами, требуется перечислить те особые случаи, которые могут быть не учтены при проектировании.

Проиллюстрируем применение всех рассмотренных выше методов на примере.

Пример 9.1. Пусть необходимо выполнить тестирование программы, определяющей точкупересечения двух прямых на плоскости. При этом она должна определять параллельность прямой одной из осей координат.

В основе программы лежит решение системы линейных уравнений:

Ах + By = С, Dx + Еу = F.

 

По методу э к в и в а л е н т н ы х р а з б и е н и й формируем для каждого коэффициента один правильный класс эквивалентности (коэффициент-вещественное число) и один неправильный (коэффициент- не вещественное число). Откуда генерируем 7 тестов:

 

1) все коэффициенты - вещественные числа (1 тест); 2-7) поочередно каждый из коэффициентов - не вещественное число (6 тестов).

 

По методу г р а н и ч н ы х з н а ч е н и й можно считать, что для исходных данных граничные значения отсутствуют, т. е. коэффициенты - «любые» вещественные числа. Для результатов получаем, что возможны варианты: единственное решение, прямые сливаются - множество решений, прямые параллельны - отсутствие решений. Следовательно, целесообразно предложить тесты с результатами внутри областей возможных значений результатов:

 

8) результат - единственное решение (δ ≠ 0);

 

9) результат - множество решений (δ =0 и δ x = δ y =0);

 

10) результат - отсутствие решений (δ =0, но δ x ≠ 0 или δ y ≠ 0);

 

и с результатами на границе:

 

11) δ =0, 01;

 

12) δ =− 0, 01;

 

13) δ =0, δ x =0, 01, δ y =0;

14) δ =0, δ y =− 0, 01, δ x =0.

 

По методу а н а л и з а п р и ч и н н о – с л е д с т в е н н ы х с в я з е й определяем множество условий:

 

а) для определения типа прямой:

 

а = 0

 

b = 0 - для определения типа и существования первой прямой;

с = 0


d = 0

 

e = 0 - для определения типа и существования второй прямой; f = 0

 

 

б) для определения точки пересечения:

 

δ =0,

δ x =0,

δ y =0.

 

Выделяем три группы причинно -следственных связей (определение типа и существования первой линии, определение типа и существования второй линии, определение точки пересечения) и строим таблицы истинности для определения типа первой прямой (табл. 9.1) и для определения результата (табл. 9.2). В обеих таблицах X означает неопределенное значение. Для второй прямой таблица истинности будет выглядеть аналогично табл. 9.1.

 

Каждая строка этих таблиц преобразуется в тест. При возможности (с учетом независимости групп) берутся данные, соответствующие строкам сразу двух или всех трех таблиц.

 

                  Таблица 9.1  
                     
А = 0 B = 0     C = 0   Результат  
           
                     
            X   прямая общего положения  
                прямая, параллельная оси ОХ  
                ось ОХ    
                прямая, параллельная оси ОУ  
                ось ОУ    
            X   множество точек плоскости  
                     
                  Таблица 9.2  
                     
δ =0   δ x =0   δ y =0 Единственное   Множество Решения  
    решение   решений нет  
               
                   
    X   X          
        X          
    X                
                     
                     

 

В результате к уже имеющимся тестам добавляются:


15-21) проверки всех случаев расположения обеих прямых - 6 тестов по первой прямой совмещают с 6-ю тестами по второй прямой так, чтобы варианты не совпадали (6 тестов);

22) проверка несовпадения условия δ x =0 или δ y =0 (в зависимости от того, какой тест был

 

выбран по методу граничных условий) — тест также можно совместить с предыдущими 6-ю тестами.

 

По методу предположения об ошибке добавим тест:

 

23) все коэффициенты - нули.

 

Всего получили 23 теста по всем четырем методам. Для каждого теста перед применением необходимо указать ожидаемый результат. Если попробовать вложить независимые проверки, то, возможно, число тестов можно еще сократить.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.013 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал