Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Составление нормальных уравнений и способы их решений.






. Составление и решение нормальных уравнений

;

;

. .; . . Тогда,

.

Выполнив сложение, получаем систему 2-х нормальных уравнений в обозначениях Гаусса:

[aa]Δ φ +[ab]Δ ω +[al]=0

[ab]Δ φ +[bb]Δ ω +[bl]=0

Так как ui=aiΔ φ +biΔ ω +li, то

[au]=0

[bu]=0

= =

Таким образом получено правило Крамера, где D-главный определитель системы, а DΔ φ и DΔ ω - определители для Δ φ и Δ ω соответственно.Контроль правильности решения получают подстановкой найденных неизвестных в так называемое суммарное уравнение, полученное суммированием нормальных уравнений.([aa]+[ab])Δ φ +([ab]+[bb])Δ ω +([al]+[bl])=0 (22)

Способ решения нормальных уравнений по правилу Крамера при n> 2 становится трудоёмким и не всегда устойчивым при малых значениях D. Другими способами решения системы нормальных уравнений являются: -способ последовательного исключения искомых величин; -способ последовательных приближений (итерации. Первый из них применяется главным образом при неавтоматизированных вычислениях, осуществляемых в ручную или на каркуляторах. Все расчеты выполняются в специальных схемах. Наиболее употребима схема Гаусса-Зейделя, в которой вычисления сводятся к простым однообразным действиям, предусмотрены постоянный контроль правильности вычислений и оценивание точности полученных результатов.Способ итерации легко реализуется на ЭВМ, к недостатку стоит отнести итерационную процедуру, которая не даёт конечного решения, но быстродействие современных ЭВМ снимает этот вопрос.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал