Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основы теории. Теоретические (без учета потерь) значения основных параметров - давления и подачи вихревого насоса - могут быть получены из уравнения количества движения.
Теоретические (без учета потерь) значения основных параметров - давления и подачи вихревого насоса - могут быть получены из уравнения количества движения. Пусть q - расход через межлопаточные каналы на единице длины отвода, м3 /(); с2u - среднее значение тангенциальной составляющей абсолютной скорости на выходе из межлопаточных каналов в отвод, м/с; c0 – средняя скорость потока в отводе, м/с.
Рис. 9.1. Конструктивная схема вихревого насоса: а - рабочее колесо; б - лопасти рабочего колеса; в - межлопастные каналы; ……………………….. г - отвод; д - всасывающий патрубок; ж - вал рабочего колеса; ……………………………………………….. к - разделитель потока
Рис. 9.2 К расчёту давления, развиваемого вихревым насосом
Если полагать приближенно ось отвода прямолинейной, то по схеме на рис. 9.2 уравнение количества движения для потока, выходящего из колеса в отвод, , Следовательно, . (9.1) Из (9.1) видно, что давление в отводе нарастает в направлении движения пропорционально длине отвода. Интегрирование (9.1) даёт теоретическое повышение давления на длине l отвода . Теоретическое повышение напора на длине l отвода . (9.2) Расход в сечении отвода , поэтому (9.2) приводит к следующему уравнению теоретической характеристики вихревого насоса: . (9.3) Вследствие постоянства q и по длине отвода уравнение (9.3) графически изображается прямой линией (рис. 9.3).
________________ В основу вывода формулы положена предельно упрощённая модель течения. Действительная картина течения и количественные зависимости чрезвычайно сложны.
Рис. 9.3. Характеристики теоретического и действительного напоров вихревого насоса [к уравнению (9.3)]
Потери напора в проточной полости насоса пропорциональны квадрату подачи, поэтому, построив на графике на рис. 9.3 характеристики потерь напора , вычитанием ординат получаем характеристику действительного напора . Теоретическая мощность вихревого насоса или, учитывая (9.3), . (9.4) Это уравнение графически изображается квадратичной параболой с осью, параллельной оси ординат. Очевидно, что при и (рис..9.4).
Рис. 9.4. Характеристика мощности и КПД вихревого насоса Максимум находится дифференцированием по Q: . Отсюда получим значение Q, при котором достигается (NТ)макс, , или . Максимальное значение по уравнению (9.4) , где m – масса жидкости, проходящей в 1 с через межлопаточные каналы рабочего колеса. Характеристика показана на рис. 9.4. Рабочее колесо вихревого насоса увеличивает тангенциальную составляющую скорости жидкости, проходящей через него, от до ; составляющая скорости вихревого течения в отводе и рабочем колесе по условию неразрывности сохраняется постоянной. Поэтому мощность, затрачиваемую рабочим колесом вихревого насоса, можно вычислить как разность секундных кинетических энергий потока на выходе и входе: . (9.5) Значения для характерных подач, использованных при построении графика , ; ; ; ; ; . По этим данным построен график (рис. 9.4). Ввиду того что - полезная теоретическая мощность, а - теоретическая мощность, затрачиваемая колесом, внутренний КПД вихревого насоса вычисляется как отношение к , определяемое по (9.4) и (9.5), . Окончательное выражение для получается подстановкой в последнее равенство : . (9.6) Величины для некоторых значений Q: ; ; ; ; ; ; ; ; . Характеристика внутреннего КПД показана на рис. 9.4 штриховой линией. Внутренние потери энергии, обусловленные передачей энергии от рабочего колеса потоку жидкости в отводе, представляются отрезками ординат между кривыми и . Из изложенного следует, что при постоянной частоте вращения рабочего колеса внутренние потери энергии в вихревом насосе тем больше, чем меньше подача. Следовательно, эксплуатация вихревого насоса в режиме значительного дросселирования нежелательна.
|