Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Номенклатура






Получение

1.Декарбоксилирование натриевых солей карбоновых кислот. В лаборатории метан получают при нагревании ацетата натрия CH3COONa с твердым гидроксидом натрия:

CH3COONa+NaOH –-- CH4 +Na2CO3

2.Синтез Вюрца. Этан и другие предельные углеводороды с более длинной цепью можно получить при взаимодействии однородных галогенпроизводных предельных углеводородов с металлическим натрием:

CH3 - I Na

+ –--CH3 – CH3 +2Na I

CH3- I Na

йодметан этан

Первым эту реакцию в 1855 году осуществил французский химик А.Вюрц (реакция Вюрца)

Простейший представитель предельных углеводородов – метан – образуется в природе в результате разложения остатков растительных и животных организмов без доступа воздуха.Он содержится и в газах, выделяющихся при добыче нефти. В состав природного газа и нефтяных газов входят также этан C2H6, пропан C3H6, бутан C4H6 и некоторые другие. Газообразные, жидкие и твердые предельные углеводороды содержаться в нефти

ФС
Метан – газ без цвета и запаха, почти в 2 раза легче воздуха, мало растворим в воде. Этан, пропан, бутан при нормальных условиях – газы, от пентана до пентадекана – жидкости, а следующие гомологи – твердые вещества (таблица 1). Пропан и бутан под давлением могут находиться в жидком состоянии и при обыкновенной температуре.

ХС
1.Наиболее характерными реакциями предельных углеводородов являются реакции замещения. Так, например, при освещении метан реагирует с хлором (при сильном освещении может произойти взрыв):

H H

| t |

H – C – H + Cl –Cl ----H – C –Cl + HCl

| |

H H

2.Все предельные углеводороды горят с образованием оксида углерода (IV) и воды. Метан горит бесцветным пламенем, с выделением теплоты:

CH4+2O2=CO2+H2O+880 кДж

Вопрос 2, 3. конец

Смесь метана с кислородом (в объемном отношении 1: 2) или с воздухом (1: 10) при поджигании сгорает со взрывом. Взрыв может происходить и при др.соотношениях смеси с воздухом.

3.При сильном нагревании(выше 1000 градусов) без доступа воздуха предельные углеводороды разлагаются:

CH4 ----C+2H2

Если метан нагреть до более высокой температуры (1500 градусов), то реакция происходит так:

2CH4 ---- C2H2 +3H2

ацетилен

4.Углеводороды нормального строения под влиянием катализаторов и при нагревании подвергаются реакциям изомеризации и превращаются в углеводороды разветвленного строения:

CH3- CH2- CH2- CH2- CH3 ---- CH3 - CH- CH2- CH3

|

CH3 хлорметан

Вопрос 4.

Циклоалканы относят к карбоциклическим углеводородам – вещества, молекулы которых содержат замкнутую цепь атомов углерода (цикл).

Номенклатура

 

Циклоалканы – это циклические углеводороды, не содержащие в молекуле кратных связей и соответствующие общей формуле:

 

 

Точно такой же формулой описывается гомологический ряд алкенов. Из чего следует, что каждому циклоалкану изомерен соответствующий алкен. Это пример так называемой межклассовой изомерией.

Изомерия
Для циклоалканов как и для всех классов органических соединений, характерна изомерия углеродного скелета (1. Структурная изомерия). Для циклоалканов характерно структурная изомерия связанная с размером цикла,

 

 

со взаимным расположением заместителей в кольце,

 

 

со строением заместителя

 

 

Структурная изомерия для циклоалканов, во-первых, обусловлена размером цикла. Так, существует два циклоалкана формулы С4Н8: циклобутан и метилциклопропан. Во-вторых, такая изомерия обусловливается положением заместителей в цикле (например, 1, 1 и 1, 2-диметилбутан).

Изомерия положения заместителей в кольце

Вопрос 4. продолжение

 

3. Межклассовая изомерия с алкенами:

Отсутствие свободного вращения вокруг связей С-С в цикле создает предпосылки для существования пространственных изомеров у некоторых замещенных циклоалканов. Например, в молекуле 1, 2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цисизомер) или по разные стороны (трансизомер):

 

цисизомер трансизомер

По размеру цикла циклоалканы делятся на ряд групп, из которых мы рассмотрим малые (С3, С4) и обычные (С5-С7) циклы.

2. Цис-транс-изомерия, обусловленная различным взаимным расположением в пространстве заместителей относительно плоскости цикла. В цисизомерах заместители находятся по одну сторону от плоскости кольца, в трансизомерах – по разные:
3. Оптическая изомерия некоторых ди- (и более) замещенных циклов. Например, транс-1, 2-диметилциклопропан может существовать в виде двух оптических изомеров, относящихся друг к другу как предмет и его зеркальное изображение.
4. Поворотная изомерия циклоалканов. Все циклы, кроме циклопропана, имеют неплоское строение, что обусловлено стремлением атомов углерода к образованию нормальных (тетраэдрических) углов между связями. Это достигается поворотами по у-связям С–С, входящим в цикл. При этом возникают различные конформации (поворотные изомеры) с разной энергией и чаще реализуются те из них, которые обладают наименьшей энергией, т.е. более устойчивые. Например, в циклогексане наиболее устойчивой является конформация " кресла".

В этой пространственной форме отсутствует угловое напряжение, т.к. все валентные углы имеют нормальные для sp3-гибридизованных атомов значения 109°28’. Кроме того, каждая пара соседних атомов углерода (фрагмент этана) находится в заторможенной конформации.

Физические свойства циклоалканов закономерно изменяются с ростом их молекулярной массы. Пpи ноpмальных условиях циклопpопан и циклобутан – газы, циклоалканы С5 – С16 – жидкости, начиная с С17, – твердые вещества. Температуры кипения циклоалканов выше, чем у соответвующих алканов. Это связано с более плотной упаковкой и более сильными межмолекулярными взаимодействиями циклических структур.

Химические свойства

 

 

Вопрос 4. продолжение

 

 

 

 

 

получение циклоалканов:

1. При переработке нефти выделяют главным образом циклоалканы С5 - С7.

2. Действие активных металлов на дигалогензамещенные алканы (реакция Вюрца) приводит к образованию различных циклоалканов:

 

 

(вместо металлического натрия используется также порошкообразный цинк).

Строение образующегося циклоалкана определяется структурой исходного дигалогеналкана. Этим путем можно получать циклоалканы заданного строения. Например, для синтеза 1, 3-диметилциклопентана следует использовать 1, 5-дигалоген-2, 4-диметилпентан:

 

 

Существуют и другие методы получения циклоалканов. Так, например, циклогексан и его алкильные производные получают гидрированием бензола и его гомологов, являющихся продуктами нефтепереработки.

 

 

Вопрос 4. конец

 

Дегалогенирование дигалогенопроизводных. Трех- и четырехчленные циклы получают децствием цинка на соответствующие дигалогенопроизводные:

 

 

Либо можно получить пиролизом солей дикарбоновых кислот. Циклопентан и циклогексан образуются при пиролизе (нагревании без доступа воздуха) кальциевых солей соответственно гександикарбоновой и гептандикарбоновой кислот и воставлении образующихся кетонов.

Вопрос 6, 7.

Алкены

Углеводороды ряда этилена по международной номенклатуре называют алкенами.

C2H4

Изомерия и номенклатура.

Формулы углеводородов ряда этилена можно вывести из соответствующих формул предельных углеводородов. Названия углеводородов ряда этилена образуют путем изменения суффикса -ан соответствующего предельного углеводорода на -ен или -илен.

Гомологический ряд этилена

C2H4 - Этилен (Этен)

C3H6 - Пропилен (Пропен)

C4H8 - Бутен

C5H10 - Пентен

C6H12 - Гексен

C7H14 - Гептен

C8H16 - Октен

C9H18 - Нонен

C10H20 - Децен

Получение

· Этилен в лаборатории получают при нагревании смеси этилового спирта с концентрированной серной кислотой.

· Углеводороды ряда этилена можно получить также дегидрированием предельных углеводородов.

· На производстве этилен получают из природного газа и при процессах пиролиза нефти.

· Углеводороды ряда этилена можно получить при взаимодействии дигалогенопроизводных предельных углеводородов с металлами.

· При действии спиртовых растворов щелочей на галогенопроизводные отщепляется галогеноводород и образуется углеводород с двойной связью.

Физические свойства

Этилен — бесцветный газ, почти без запаха, немного легче воздуха, плохо растворим в воде. Пропилен и бутены (бутелены) при нормальных условиях также газообразны, от пентена C5H10 до

Вопрос

Вопрос 6, 7. конец

октадецена C18H36 включительно углеводороды находятся в жидком состоянии, а начиная с нонадецена C19H38 - в твердом.

Химические свойства

Химические свойства этилена и его гомологов в основном определяются наличием в их молекулах двойной связи. Для них характерны реакции присоединения, окисления и полимеризации.

· Реакции присоединения.

· Этилен и его гомологи взаимодействуют с галогенами. Так, например, они обесцвечивают бромную воду:
H2C = CH2 + Br2 -> Ch2Br - CH2Br

· Аналогично происходит присоединение водорода (гидрирование этилена и его гомологов)

· В присутствии серной или ортофосфорной кислоты и других катализаторов этилен присоединяет воду (реакция гидратации). Этой реакцией пользуются для получения этилового спирта в промышленности.

· Этилен и его гомологи присоединяют также галогеноводороды. Пропилен и последующие углеводороды ряда этилена реагируют с галогеноводородами согласно правилу В.В.Марковникова.

Водород присоединяется к наиболее, а атом галогена - к наименее гидрированному атому углерода:
(пропилен) CH2 = CH - CH3 + HBr → CH3 - CHBr - CH3 (2 - бромпропан)

· Реакции окисления.

· Этилен и его гомологи способны гореть на воздухе. С воздухом этилен и его газообразные гомологи образуют взрывчатые смеси.

· Этилен и его гомологи легко окисляются, например кислородом перманганатакалия; при этом раствор последнего обесцвечивается.

· Большое промышленное значение имеет частичное окисление этилена кислородом воздуха.

· Реакции полимеризации.
При повышенной температуре, давлении и в присутствии катализаторов молекулы этилена соединяются друг с другом вследствие развала двойной связи.
Процесс соединения многих одинаковых молекул в более крупные называется реакцией полимеризации.

Получение.

Этилен и его соединения используются для получения горючего с высоким октановым числом, пластмасс, взрывчатых веществ, антифризов, растворителей, для ускорения созревания фруктов, для получения ацетальдегида, синтетического каучука.

Вопрос №8, 9.

Ацетиленовыми углеводородами (алкинами) называются непредельные (ненасыщенные) углеводороды, содержащие в молекуле одну тройную связь и имеющие общую формулу CnH2n-2.
Изомерия

Алкинам свойственна изомерия углеродного скелета (начиная с C5H8), изомерия положения тройной связи (начиная с C4H6) и межклассовая изомерия с алкадиенами.

 

Получение

 

1) В промышленном масштабе для технических целей ацетилен получают высокотемпературным пиролизом метана.

 

2CH4 ––1500°C® HCєCH + 3H2

 

2) Алкины можно получить из дигалогенопроизводных парафинов отщеплением галогеноводорода при действии спиртового раствора щелочи. Атомы галогена при этом могут быть расположены как у соседних атомов углерода, так и у одного углеродного атома.

 

Вопрос 8, 9 продолжение. СH3–CH–CH2 + 2 KOH ––этанол® CH3–CєCH + 2KBr + 2H2O I I Br Br

 

Br I CH3–C–CH2–CH3 + 2KOH ––этанол® CH3–CєC–CH3(бутин-2) + 2KBr + 2H2O I Br

 

3) Ацетилен получают также из ацетиленида (карбида) кальция при разложении его водой.

 

CaC2 + 2H2O ® Ca(OH)2 + HCєCH

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.017 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал