![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
От напряжения
Результаты экспериментального исследования зависимости скорости дислокаций в плоскости скольжения от величины приложенного напряжения τ для монокристаллов цинка представлены на рис. 3.29. Аналогичные зависимости наблюдаются для других кристаллов. Эти закономерности позволяют сделать следующие заключения.
Эту силу обычно называют силой внутреннего трения в отличие от внешнего трения (или просто трения), действующего на внешней поверхности металла. Сила внутреннего трения при перемещении дислокаций и других дефектов внутри объема тела ответственна за диссипацию (рассеяние) энергии деформации (переход упругой энергии в тепловую). Нагрев металла при обработке обусловлен одновременным действием обеих сил трения: поверхностные слои нагреваются в основном за счет внешнего трения, а внутренние – за счет внутреннего трения. Скорость дислокаций, как и в предыдущем примере, определяется равенством силы τ b, толкающей дислокацию в плоскости ее скольжения, и силы внутреннего трения F c(v) на единицу длины дислокации: F c(v) = τ b. (3.41) 2. Оценим роль инерционных эффектов, зависящих от массы дислокации, т. е. определим переходное время, необходимое для увеличения скорости дислокации от v 1 до v 2 при увеличении напряжения от τ 1 до τ 2. Эффективная масса дислокации (на единицу ее длины), определяющая ее инерционность, должна быть порядка Db 2, где D – плотность кристалла. Тогда характерное время, необходимое для разгона дислокации на D v=v 2− v 1:
где а − ускорение. Взяв данные для Δ v и Δ τ из рис. 3.29: при Δ τ =1 МПа D v =102 м/c, получим для b =3ּ 10 –10 м и D =10*103 кг/м3 время tх ≈ 3ּ 10–10 с. Оно пренебрежимо мало для любых имеющихся к настоящему времени экспериментов, во всяком случае много меньше времени приложения нагрузки в любых реальных условиях. Таким образом, инерционные эффекты не играют никакой роли в динамике дислокации. Всегда можно считать, что скорость дислокации «равновесная», т. е. соответствует равенству действующей силы и силы сопротивления (3.41). 3. Видно, что кривая v (τ) состоит из двух различных участков. На первом участке скорость дислокации быстро увеличивается с возрастанием напряжения, а на втором слабо зависит от τ. На первом участке зависимость v (τ) может быть аппроксимирована экспонентой типа v = v 0exp(β τ), например,
где v 0 » 0, 1 С зв, (С зв - скорость звука в металле), U 0 и γ – постоянные. Таким образом, скорость на I участке экспоненциально возрастает с увеличением температуры: v ~ехр(– А/Т). Можно предположить, что на I участке дислокации движутся, преодолевая с помощью тепловых флуктуаций энергетические барьеры высотой U 0 (например, барьер Пайерлса, барьеры из-за взаимодействия дислокаций с атомами примесей, барьеры при пересечении движущихся дислокаций и дислокаций других систем скольжения). Экспонента 4. Движение дислокации в I области может начаться до достижения напряжением τ в плоскости скольжения критического значения Пайерлса τ П. Так, в приведенном примере наблюдается заметное движение дислокаций при τ ≈ 0, 2 МПа, в то время как τ П> 10МПа. 5. Считается, что в области II дислокация теряет энергию в основном на возбуждение колебаний решетки, а препятствия, определявшие скорость движения дислокации в области I, становятся несущественными. Поскольку вероятность такого возбуждения тем больше, чем интенсивнее собственные колебания решетки, то и сила сопротивления движению дислокации F с II (v) возрастает с увеличением температуры. Такая сила называется динамическим трением. Точное значение F с II (v) теоретически определить трудно. В главе 1 мы показали, см. (1.6), что энергия межатомных связей в объеме металла описывается выражением, аналогичным соотношению Эйнштейна, связывающему скорость света и энергию системы. Отличие выражений состоит в том, что в качестве максимально достижимой скорости - скорости света для вакуума, в металле выступает скорость распространения звука С зв. Возможно, что С зв - это тоже максимально достижимая скорость, но не в вакууме, а в металле. Тогда и скорость дислокаций не может быть больше С зв, что убедительно иллюстрирует рис. 3.29.
|