![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Уравнение (2.4) называют уравнением неразрывности (сплошности) потока для несжимаемой жидкости.
Для плавно изменяющегося потока вязкой жидкости, движущейся от сечения 1 к сечению 2, уравнение Д. Бернулли имеет вид: где Для потока реальной жидкости уравнение Д. Бернулли является уравнением баланса энергии с учетом ее потерь. Заметим, что теряемая энергия не исчезает бесследно, а лишь превращается в другую форму (тепловую), т. е. теряется потоком безвозвратно. Потери напора где Различают два режима движения жидкости: ламинарный и турбулентный. Существование того или иного режима движения определяется поведением частиц жидкости. Ламинарный режим движения характеризуется слоистым параллельно-струйчатым движением без перемешивания частиц жидкости и без пульсации скорости. При таком движении траектории частиц определяются формой русла, по которому течет жидкость. Турбулентный режим движения характеризуется интенсивным перемешиванием жидкости с пульсацией скоростей и давлений. При таком движении частицы жидкости движутся по произвольным, крутящимся и колеблющимся, ежесекундно меняющим свой вид и направление траекториям. Экспериментальными исследованиями О. Рейнольдса было установлено, что режим движения зависит от динамического коэффициента вязкости Известно, что динамический коэффициент вязкости Формулы (2.7), (2.8) справедливы для круглых труб. Применительно к потокам любого другого сечения диаметр трубы выражают через гидравлический радиус Границы существования того или иного режима движения жидкости определяются двумя значениямиRe: нижним критическим числом
|