Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Билет 29.
1) Новые парадигмы методологии науки: системный подход и синергетика. Размышления о будущем науки. Значение социальных и духовных ценностей в развитии науки. В современной методологии науки, начиная с середины XX века, сформировался новый — системный подход — междисциплинарное философско-методологическое и специально-научное направление, обладающее высоким исследовательским и объясняющим потенциалом. Как особый тип методологии, он предполагает вычленение общефилософского, общенаучного и специально-научного уровней, а также рассмотрение соответствующего каждому из них понятийного аппарата, основных принципов и функций. Принцип системности объединяет и синтезирует несколько идей и представлений: системности, целостности, соотношения части и целого, структурности и «элементарности» объектов, универсальности, всеобщности связей, отношений, наконец, развития, поскольку предполагается не только статичность, но и динамичность, изменчивость системных образований. Как один из ведущих и синтезирующих философских принципов, он лежит в основе системного подхода — общенаучной междисциплинарной и частнонаучной системной методологии, а также социальной практики, рассматривающих объекты как системы. Он не является строгой теоретической или методологической концепцией, но как совокупность познавательных принципов позволяет фиксировать недостаточность внесистемного, нецелостного видения объектов и, расширяя познаваемую реальность, помогает строить новые объекты исследования, задавая им характеристики, предлагает новые схемы их объяснения. Он близок по ориентированности структурно-функциональному анализу и структурализму, которые, однако, формулируют достаточно «жесткие» и однозначные правила и нормы, обретая соответственно черты конкретных научных методологий, например в области структурной лингвистики. К фундаментальным задачам, решаемым сегодня в сфере становления и развития методологии системного исследования, относятся следующие: построение понятий и моделей для системного представления объектов, разработка приемов и аппарата описания всех параметров системы: типа связей, отношения со средой, иерархии строения, характера управления, построение формализованных — знаковых, идеальных, математических — систем для описания реальных системных объектов и возможности применения правил логического вывода. В конкретных науках на уровне специальной методологии осуществляются системные разработки с использованием конкретных методов, приемов системного анализа, применяемых именно для данной области исследования. Обращение к сложноорганизованным эволюционирующим и неравновесным системам вывело исследователей к принципиально новой теории самоорганизации - синергетике, возникшей в начале 70-х годов XX века (термин ввел немецкий физик Г. Хакен от греческого sinergeia — содействие, сотрудничество), сочетающей системно-информационный, структуралистский подходы с принципами самоорганизации, неравновесности и нелинейности динамических систем. 2) Научная программа И.Ньютона. Основные законы и принципы классической механики. Механицистская картина мира. Механицизм как стиль мышления и всеобщая методология классической науки. Характерные черты классической картины мира: 1) Механицизм (от Ньютона). Мир = совокуп-ть частиц, перемещающихся по законам механики в абс. пространстве и времени, связанных силами тяготения. Природа = машина, часы. Проявл. даже в науках о живом. 2) Линейный детерминизм. 3) Единообразие природы (везде действуют идентичные законы). 4) Бесконечность Вселенной. Исаак Ньютон: физика, астрономия, мат-ка, теология. " Математические начала натуральной философии" (1687). Н. устанавливает 4 " правила фс рассуждения" (методология): 1. «Не следует допускать причин больше, чем достаточно для объяснения видимых природных явлений". (У.Оккам). 2. " Одни и те же явления мы должны, насколько возможно, объяснять теми же причинами. Например, дыхание человека и животного; падение камней в Европе и в Америке; свет от огня в кухне и свет от Солнца; отражение света на Земле и на планетах". 3. «Свойства тел, не допускающие ни постепенного увеличения, ни постепенного уменьшения и проявляющиеся во всех телах в пределах наших экспериментов, должны рассматриваться как универсальные". Т.е. – онтологические постулаты о простоте и единообразии природы. Далее переходит к установлению фундамент. свойств тел: протяженность, твердость, непроницаемость, движение. К установлению этих свойств мы приходим с помощью наших чувств. " Протяженность, твердость, подвижность и сила инерции целого являются результатом протяженности, твердости, непроницаемости, подвижности и силы инерции частей; из этого мы заключаем, что даже самые маленькие части всех тел также должны быть протяженны, тверды, непроницаемы, подвижны и обладать собственной инерцией. И это - основа всей философии". Речь идет о корпускулярности. Природа проста и единообразна. На основе чувств, т.е. путем наблюдений и экспериментов, можно установить некоторые из основных свойств тел: протяженность, твердость, непроницаемость, подвижность, силу инерции целого, всемирное тяготение. И эти свойства устанавливаются с помощью индуктивного метода. 4. В экспериментальной филос-и суждения, выведенные путем общей индукции, следует рассматривать как истинные или очень близкие к истине, несмотря на противоположные гипотезы, которые могут быть вообразимы, - до тех пор, пока не будут обнаружены другие явления, благодаря которым эти суждения или уточнят, или отнесут к исключениям". (защита индукции). Порядок мира и существование Бога. Система мира - большой механизм. Но откуда же берет начало мировая система, упорядоченная и узаконенная? Ньютон отвечает: " Эта удивительная система Солнца, планет и комет могла появиться только по проекту премудрого и могущественного Существа». Порядок мира со всей очевидностью демонстрирует существование Бога. Но что еще, помимо того что Он существует, мы можем утверждать о Боге? " Как слепой не имеет никакого представления о цвете, так мы не имеем никакого представления о том, каким образом мудрейший Бог воспринимает и понимает все сущее. Он лишен тела и телесной формы, вследствие чего Его нельзя ни видеть, ни слышать, ни коснуться". Великий мировой механизм. 3 ньютоновских з-на движ-я: 1) Закон инерции (над которым работали Галилей и Декарт) Ньютон пишет: " Всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние". 2) Второй закон, сформулированный уже Галилеем, гласит: " Произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы". 3) " Действию всегда соответствует равное противодействие". Но: состояния покоя и равномерного прямолин. движения м. б. определены только относительно др. тел, к-рые находятся в покое или в движ-и. Соотносить с др. системами нельзя до бескон-ти => Н. вводит 2 понятия (к-рые станут объектом дискуссий и критики) - абсолютного времени и абсолютного пространства. Эти два концепта лишены оперативного значения (" концептуальные чудовища"). Внутри абсолютного пространства соединение тел осуществляется по з-ну всемирного тяготения. Механика Ньютона как программа исследований. Н. предлагает " программу исследований": с помощью силы тяготения она объяснит все не только падение тяжелых тел, орбиты небес. тел и приливы, - но и электрич. явления, оптические и даже физиологические. Сам Н. попытался сам реализовать программу в области оптики: " Когда Ньютон предположил, что свет состоит из инертных частиц, - пишет Эйнштейн, - он был 1-м, кто сформулировал основу, из к-рой оказалось возможно дедуцировать большое число явлений посред-вом логико-математич. рассуждений. Он надеялся, что со временем фундаментальные основы механики дадут ключ к поним-ю всех явлений, так думали и его ученики вплоть до к. XVIII в." Механика Н. стала одной из наиболее мощных и плодотворных исследоват. программ в истории науки.
|