Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
O Комплекс потенциалов мозга, связанных с движениями
Одним из важных направлений в исследовании психофизиологии двигательного акта является изучение комплекса колебаний потенциалов мозга, связанных с движениями (ПМСД). Значение этого феномена для понимания физиологических механизмов организации движения очень велико, потому что изучение ПМСД позволяет выявить скрытую последовательность процессов, происходящих в коре мозга при подготовке и выполнении движения, и хронометрировать эти процессы, т.е. установить временные границы их протекания. Компонентный состав ПМСД. Впервые этот комплекс, отражающий процессы подготовки, выполнения и оценки движения был зарегистрирован в 60-е годы. Оказалось, что движению предшествует медленное отрицательное колебание — потенциал готовности (ПГ). Он начинает развиваться за 1, 5 - 0, 5 с до начала движения. Этот компонент регистрируется преимущественно в центральных и лобно-центральных отведениях обоих полушарий. За 500-300 мс до начала движения ПГ становится асимметричным — его максимальная амплитуда наблюдается в прецентральной области, контралатеральной движению. Примерно у половины взрослых испытуемых на фоне этого медленного отрицательного колебания незадолго до начала движения регистрируется небольшой по амплитуде положительный компонент. Он получил название " премоторная позитивность" (ПМП). Следующее по порядку быстро нарастающее по амплитуде отрицательное колебание, так называемый моторный потенциал (МП), начинает развиваться за 150 мс до начала движения и достигает максимальной амплитуды над областью моторного представительства движущейся конечности в коре головного мозга. Завершается этот комплекс потенциалов положительным компонентом примерно через 200 мс после начала движения. Функциональное значение компонентов. Принято считать, что потенциал готовности (ПГ) возникает в моторной коре и связан с процессами планирования и подготовки движения. Он относится к классу медленных отрицательных колебаний потенциала мозга, возникновение которых объясняют активацией нейрональных элементов соответствующих участков коры. Вопрос 32. Связанные с событиями потенциалы.
Сенсорные стимулы вызывают изменения в суммарной электрической активности мозга, которые выглядят как пocледовательность из нескольких позитивных и негвтивных волн, которая длится в течение 0, 5-1 с после стимула. Этот ответ получил название вызванного потенциала (evoked pоtential). Его нелегко выделить из фоновой ЭЭГ. В 195I г. Дж. Даусон (G. Dаwson) разработал технику когерентного накопления или усреднения ответов. Использовалась процедура синхронизации ЭЭГ относительно момента предъявления стимула который поэтому многократно повторялся. Сначала использовалась суперпозиция — наложение, нескольких реакций (участков ЭЭГ, следующих за стимулом). Обычно это выполнялось на фотопленке, чтo позволяло выявить наиболее устойчивые части реакции на стимул. Затем процедура суперпозиции была заменена на суммацию участков ЭЭГ и получение усредненного вызванного потенциала (average evoked рotеntial) (Шагас Ч., 1975; Рутман Э.М., 1975). Эффективность этой процедуры была наглядно продемонстрирована при выявлении звуковых стволовых вызванных потенциалов (ВП). Из-за их очень малой амплитуды требуется просуммировать и усреднить несколько тысяч единичных ответов. На рис. 2 пpeдставлены основные группы компонентов звукового усредненного ВП. По латентному периоду компоненты делятся на три группы: потенциалы ствола мозга (с латенцией до 10-12 мс), средне-латентные (до 50 мс) и длиннолатентные (болеe 100 мс) потенциалы. Звуковые стволовые потенциалы состоят из 7 отклонений. Волна I зависит oт реакции волокон слухового нерва улитки. Волна II с латенцией 3, 8 мс возникает в том случае, если импульсы слухового нерва достигают ствола мозга. Волна III отражает реакцию верхней оливы на уровне моста. Волна IV с латенцией около 4, 5 мс связана с активностью латеральных лемнисков. Волна V имеет латенцию около 5, 2 мc и отражает активность нижнего двухолмия. Фазы VI— VII — распространение сигналов по таламо-кортикальной радиации, они совпадают с медленной негативностью, предшествующей корковому ответу. Ранние компоненты нечувствительны к сну, наркозу. Они вызываются звуковыми тонами частотой 2000-4000 Гц. Звуки ни частоте, ниже 2000 Гц вызывают только волну V. Cтволовые потенциалы — высокочувствительный инструмент для тестирования слуховой функции. Они позволяют определить сохранность слухового анализатора на периферическом и стволовом уровнях. Особенно это важно при обследовании слуха у детей, в том числе у новорожденных, когда словесные реакции не могут быть использованы. Значение этого теста возрастает в связи с тем фактором, что даже незначительная потеря слуха в раннем детстве может привести к существенной задержке развития речи. Стволовые звуковые потенциалы применяют также в клинике для выявления опухолей, определения коматозного состояния, обследования пациентов с демиелинизацией волокон. Если стволовые потенциалы полностью oтсутствуют, можно говорить о смерти мозга. Позже техника усреднения ВП была применена для выявления потенциалов, связанных с движением. Участки ЭЭГ усреднялись относительно не стимула, а начала движения. Это дало возможность исследовать моторные потенциалы и потенциалы готовности, предшествующие движению. Для обозначения всех групп потенциалов был введен общий для них термин — «потенциалы, связанные с событиями» (ПСС), объединяющий ВП, моторный потенциал и др. На основе многоканальной регистрации ЭЭГ был разработан метод картирования биотоков мозга (brain mapping). Картирование дает представление о пространственном распределении по коре любого выбранного показателя электрической активности мозга. Это может быть ВП, один из его компонентов или альфа-ритм (или другие частотные полосы спектра ЭЭГ). Значения мощности выбранного показателя подразделяются на уровни. В одном варианте каждому уровню приписывается свой цвет и изменение локуса активности выглядит как перемещение определенного цвета по карте. В другом варианте значения показателя, принадлежащие одному уровню, соединяются изолиниями, как на топографических картах, на которых можно видеть возвышенности и впадины. Рассматриваются карты, полученные в разное время и в разных условиях. Этот метод позволяет выявить фокусы активности мозга. Используется процедура вычитания одной карты потенциалов из другой, что позволяет связать паттерн ЭЭГ-активности с той или другой когнитивной операцией. №33. Таламический водитель ритма
Клетки-пейсмекеры (водители ритма) – особая разновидность клеток, способных генерировать потенциал действия самостоятельно, без раздражения извне. Деятельность этих клеток нарушает общий закон о необходимости первопричины движения. Пейсмекеры расположены по всему организму человека – в т.ч., в таламических структурах мозга и в сердце. Обращаю внимание, что в тексте пойдёт речь не о таламических пейсмекерах, а о функции таламуса, которая будет сравниваться с функцией пейсмекеров сердца. Так что воспринимайте формулировку данного вопроса как метафоруJ
Структуры головного мозга (ГМ), которые отвечают за биологические мотивационные состояния, обладают различными свойствами. Разрушение гипоталамических центров полностью исключает биологические мотивации – животное может лежать в окружении пищи и погибнуть от голода. Т.е., в структуре мотивационного возбуждения гипоталамическим центрам принадлежит ведущая роль.
Гипоталамические центры в структуре «голодного» мотивационного возбуждения гораздо чувствительнее к химическим веществам по сравнению с корой ГМ. Раствор атропина 0, 0001%, введённый через специальную иглу в латеральный гипоталамус, устраняет голодную мотивацию во всех структурах ГМ.
Механизм формирования биологической мотивации у животных напоминает возникновение возбуждения в синусоидном узле сердечной мышцы, где располагаются клетки-пейсмекеры. 1. В сердце возбуждение возникает ритмически. Та же картина – и в мотивациогенных центрах гипоталамуса. Возбуждение там возникает периодически, по триггерному типу, по мере нарастания потребности до критического уровня. Оно сохраняется, пока существует потребность, и затем исчезает. 2. Как и пейсмекер сердца, структуры гипоталамуса по сравнению с другими структурами ГМ, обладают повышенной возбудимостью к электрическим и химическим раздражителям. 3. Так же как и в сердечной мышце, по отношению к гипоталамическим образованиям, другие структуры мозга выстраиваются по определённому градиенту возбудимости до коры включительно. 4. Мотивационные центры гипоталамуса держат в функциональной зависимости структуры других уровней мозга. Выключение этих центров приводит к распаду всей системы объединённых в мотивационное возбуждение элементов.
Концепция пейсмекерной роли гипоталамических центров в формировании основных биологических мотиваций принадлежит Анохину и Судакову. Знание этой роли определяет врачебную тактику влияния на них с помощью препаратов.
Вопрос о генезисе волны ЭЭГ является довольно сложным; вместе с тем можно утверждать, что волны ЭЭГ являются результатом алгебраической суммации постсинаптических потенциалов корковых нейронов. Наиболее эффективная суммация происходит при синхронном возбуждении многих клеток, которое проявляется при ограничении сенсорного притока. Приход сенсорной импульсации в кору (например, при открывании глаз) расстраивает синхронизацию и приводит к смене α —ритма на β —ритм, или к реакции десинхронизации ЭЭГ. Причиной возникновения синхронных постсинаптических изменений в корковых нейронах могут быть циклические таламокортикальные взаимодействия в которых таламические нейроны играют роль своеобразных ритмоводителей или пейсмекеров. В пользу этой точки зрения свидетельствуют следующие экспериментальные факты. В таламических центрах обнаружена ритмическая активность, частота которой совпадает с α —ритмом. После экспериментального нарушения таламокортикальных связей α —ритм в коре исчезает, а в таламических структурах сохраняется. Одним из возможных механизмов ритмической активации таламических нейронов считают возвратное самоторможение, создающее периодические колебания возбудимости. Кроме того, на генерацию таламического ритма влияют импульсы, поступающие из ретикулярной формации ствола. Частота этих импульсов зависит от афферентного притока в неспецифическую систему ретикулярной формации, которая может и стимулировать, и тормозить ритмическую активность таламических центров.(вот отсюда- https://www.ngmu.ru/kafedri/normalnoi-fiziologii/umr/...)
№34. Роль ретикулярной формации в поддержании активности коры ГМ.
Ретикулярная формация - совокупность нейронов и соединяющих их нервных
Данные о том, что ретикулярная формация играет важную роль в поддержании
Бремер сделал вывод, что для бодрствующего состояния высших отделов мозга необходимо непрерывное поступление к ним афферентных импульсов, в
Оно всегда дает однозначные результаты в виде характерной поведенческой
Для коры больших полушарий характерна постоянная электрическая Реакция десинхронизации не ограничивается каким-нибудь одним участком коры, а регистрируется от больших ее областей. Это говорит о том, что восходящие ретикулярные влияния являются генерализованными.
Описанные изменения в электроэнцефалограмме не являются единственным
Швейцарский физиолог В. Гесс (1929) впервые показал, что в стволе
|