Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Постэмбриональное развитие бывает прямым и непрямым.
1. Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих. 2. Непрямое развитие (личиночное развитие, развитие с метаморфозом) — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинка питается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, различных червей.Постэмбриональное развитие сопровождается ростом. Билет №26. Биосоциальная природа человека как отражение эволюционно обусловленной иерархии живой природы. Значение биологического наследия человека в современных условиях жизни. На планете среди других существ людям принадлежит уникальное место, что обусловлено приобретением ими в процессе антропогенеза особого качества — социальной сущности. Это означает, что уже не биологические механизмы, а в первую очередь общественное устройство, интеллект, производство, труд обеспечивают выживание, всесветное и даже космическое расселение, благополучие человечества. Социальность, однако, не противопоставляет людей остальной живой природе. Человек остается включенным в систему органического мира. Этот мир складывался и развивался на протяжении большей части истории планеты независимо от человеческого фактора, более того, на определенном этапе своего развития он этот фактор породил. Человечество составляет своеобразный, но неотъемлемый компонент биосферы. Крупный отечественный патолог И. В. Давыдовский писал, что естественность и законность болезней вытекают из основных свойств жизни, а именно из универсального и важнейшего свойства организмов — приспосабливаться к меняющимся условиям внешней среды. По его мнению, полнота такого приспособления и есть полнота здоровья.
Билет №27 Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выделяют овогенез и сперматогенез соответственно. Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосемянных растений, а также многоклеточных животных. В некоторых группах гаметы вторично редуцированы (сумчатые и базидиевые грибы, цветковые растения). Наиболее подробно процессы гаметогенеза изучены у многоклеточных животных. Гаметогенез (от гаметы и греч. genesis — происхождение), процесс развития и формирования половых клеток — гамет. Г. мужских гамет (сперматозоидов, спермиев) называют сперматогенезом, женских гамет (яйцеклеток) — оогенезом. У животных и растений Г. протекает различно, в зависимости от места мейоза в жизненном цикле этих организмов. У многоклеточных животных Г. происходит в специальных органах — половых железах, или гонадах (яичниках, семенниках, гермафродитных половых железах), и складывается из трёх основных этапов: 1) размножение первичных половых клеток — гаметогониев (сперматогониев и оогониев) путём ряда последовательных митозов, 2) рост и созревание этих клеток, называют теперь гаметоцитами (сперматоцитами и ооцитами), которые, как и гаметогонии, обладают полным (большей частью диплоидным) набором хромосом. В это время совершается основное событие Г. у животных — деление гаметоцитов путём мейоза, приводящее к редукции (уменьшению вдвое) числа хромосом в этих клетках и превращению их в гаплоидные клетки (см. Гаплоид) — сперматиды и оотиды; 3) формирование сперматозоидов (либо спермиев) и яйцеклеток; при этом яйцеклетки одеваются рядом зародышевых оболочек, а сперматозоиды приобретают жгутики, обеспечивающие их подвижность. У самок многих видов животных мейоз и формирование яйца завершаются после проникновения сперматозоида в цитоплазму ооцита, но до слияния ядер сперматозоида и яйцеклетки. У растений Г. отделен от мейоза и начинается в гаплоидных клетках — в спорах (у высших растений — микроспоры и мегаспоры). Из спор развивается половое поколение растения — гаплоидный гаметофит, в половых органах которого — гаметангиях (мужских — антеридиях, женских — архегониях) путём митозов происходит Г. Исключение составляют голосеменные и покрытосеменные растения, у которых сперматогенез идёт непосредственно в прорастающей микроспоре — пыльцевой клетке. У всех низших и высших споровых растений Г. в антеридиях — это многократное деление клеток, в результате которого образуется большое число мелких подвижных сперматозоидов. Г. в архегониях — формирование одной, двух или нескольких яйцеклеток. У голосеменных и покрытосеменных растений мужской Г. состоит из деления (путём митоза) ядра пыльцевой клетки на генеративное и вегетативное и дальнейшего деления (также путём митоза) генеративного ядра на два спермия. Это деление происходит в прорастающей пыльцевой трубке. Женский Г. у покрытосеменных растений — обособление путём митоза одной яйцеклетки внутри 8-ядерного зародышевого мешка. Основное различие Г. у животных и растений: у животных он совмещает в себе превращение клеток из диплоидных в гаплоидные и формирование гаплоидных гамет; у растений Г. сводится к формированию гамет из гаплоидных клеток.
Гаметы (от греч.?????? — жена,??????? — муж) — репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в гаметном, в частности, половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы. У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) — партеногенез. Морфология гамет и типы гаметогамии
Морфология гамет различных видов достаточно разнообразна, при этом продуцируемые гаметы могут отличаться как по хромосомному набору (при гетерогаметности вида), величине и подвижности (способности к самостоятельному передвижению), при этом гаметный диморфизм у различных видов варьирует в широких пределах — от отсутствия диморфизма в виде изогамии до своего крайнего проявления в форме оогамии. Изогамия Если сливающиеся гаметы морфологически не отличаются друг от друга величиной, строением и хромосомным набором, то их называют изогаметами, или бесполыми гаметами. Такие гаметы подвижны, могут нести жгутики или быть амёбовидными. Изогамия типична для многих водорослей. Анизогамия (гетерогамия) Гаметы, способные к слиянию, различаются по размерам, подвижные микрогаметы несут жгутики, макрогаметы могут быть как подвижны (многие водоросли), так и неподвижны (лишённые жгутиков макрогаметы многих протистов). Оогамия Способные к слиянию гаметы одного биологического вида резко различаются по размерам и подвижности на два типа: малые подвижные мужские гаметы — сперматозоиды — и крупные неподвижные женские гаметы — яйцеклетки. Различие размера гамет обусловлено тем, что яйцеклетки содержат запас питательных веществ, достаточный для обеспечения нескольких первых делений зиготы при её развитии в зародыш. Мужские гаметы — сперматозоиды — животных и многих растений подвижны и обычно несут один или несколько жгутиков, исключением являются лишённные жгутиков мужские гаметы семенных растений — спермии, которые доставляются к яйцеклетке при прорастании пыльцевой трубки, а также безжгутиковые сперматозоиды (спермии) нематод и членистоногих. Хотя сперматозоиды несут митохондрии, при оогамии от мужской гаметы к зиготе переходит только ядерная ДНК, митохондриальная ДНК (а в случае растений и пластидная ДНК) обычно наследуется зиготой только от яйцеклетки.
Билет №28. Нетрадиционное наследование (геномный импринтинг, однородительская дисомия, экспансия тринуклеотидных повторов, митохондриальное наследование). ЭКСПАНСИЯ ТРИНУКЛЕОТИДНЫХ ФРАГМЕНТОВ - патологическое состояние: вариант генетической мутации, характеризующийся появлением в ДНК " бессмысленных" повторов тринуклеотидов, которые могут приводить к дезорганизации функционирования ДНК или синтезу патологического белка, накапливающегося в клетках, что приводит к гибели клетки. Лежит в основе ряда заболеваний (болезни Гентингтона, болезни Кеннеди, спиноцеребеллярных дегенерации и т.д.), тяжесть которых зависит от числа повторов тринуклеотидов. Общая особенность этой группы заболеваний - более раннее начало и нарастание тяжести их клинических проявлений из поколения в поколение, что обычно отражает увеличение числа тринуклеотидных повторов (феномен антиципации). В последнее время выделяется еще один тип наследования - митохондриальный. Митохондрии передаются с цитоплазмой яйцеклеток. Спермии не имеют митохондрий, поскольку цитоплазма элиминируется в процессе созревания мужских половых клеток. В яйцеклетке содержится около 25000 митохондрий. Каждая митохондрия содержит кольцевую хромосому. Генные мутации в митохондриальной ДНК обнаружены при атрофии зрительного нерва Лебераф, митохондриальных миопатиях, прогрессирующих офтальмоплегиях. Болезни, обусловленные данным типом наследственности, передаются от матери и дочерям, и сыновьям в равной степени. Больные отцы болезнь не передают ни дочерям, ни сыновьям. Геномный импринтинг — эпигенетический процесс, при котором экспрессия определенных генов осуществляется в зависимости оттого, от какого родителя поступил аллель гена. Это ненаследуемый процесс, который не подчиняется наследованию по Менделю. Импринтинг генов вызывает экспрессию аллелей гена полученных от матери в случае генов H19 или CDKN1C и от отца в случае гена IGF2. Импринтинг некоторых генов в составе генома показан для насекомых, млекопитающих и цветковых растений. Импринтинг генов осуществляется с помощью процесса метилирования ДНК. Если по каким-то причинам импринтинг не сработает, это может привести к появлению генетических нарушений (например Синдром Прадера-Вилли).[13] Однородительская дисомия, то есть наследование обеих копий целой хромосомы или ее части от одного родителя (при отсутствии соответствующего генетического материала от другого родителя), является исключением из менделевских принципов наследования. Она встречается редко и вызывает, например, синдром Прадера-Вилли и синдром Ангельмана. Роль дисомии в патологии во многом усугубляется геномным импринтингом, который приводит к неодинаковой экспрессии материнской и отцовской копий гена. Возможный механизм дисомии - элиминация лишней хромосомы у плода с трисомией на ранних стадиях эмбриогенеза. Болезнь проявляется в том случае, если элиминируется лишняя хромосома, происходящая из нормальной гаметы. Однородительская дисомия была описана при муковисцидозе, когда оба мутантных аллеля наследовались от одного родителя. В таких случаях дисомия имитирует аутосомно-рецессивное наследование. У 20-30% больных с синдромом Прадера-Вилли, имеющих по данным цитогенетического исследования нормальный кариотип, с помощью молекулярно-биологических методов обнаруживается дисомия материнской 15-й хромосомы. Отцовская 15-я хромосома у таких больных отсутствует. Предполагают, что однородительская дисомия является причиной внутриутробной задержки развития, умственной отсталости и микроцефалии. Эти предположения пока не подтверждены молекулярно-биологическими исследованиями.
|