Главная страница
Случайная страница
КАТЕГОРИИ:
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Билет №37. Биологическое наследие человека как один из факторов, обеспечивающих возможность социального развития, и его значение в определении здоровья людей.
Билет №38 Генная инженерия, этапы - вопрос
Билет №39. Фундаментальные свойства живых систем. Проявление фундаментальных свойств живого на основных эволюционно обусловленных уровнях организации жизни.
Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит восстановление разрушенных (" отработавших") компонентов, замена их новыми, идентичными им, т.е. имеет место самообновление. Вот некоторые примеры: все белки печени и крови человека обновляются каждые 20 дней; все тканевые белки - в течение каждых 160 дней; все клетки кишечного эпителия обновляются в течение недели. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Показательны расчеты для клеток человека - их метаболический аппарат включает более 10000 реакций. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное " узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Так, например, одна молекула фермента каталазы осуществляет расщепление 5 миллионов молекул субстрата (Н2О2) в течении одной минуты. Для сравнения - Н2О2 может разлагаться в присутствии атомов Fe, но медленно - понадобилось бы 300 лет, чтобы один атом железа расщепил такое количество молекул Н2О2, какое одна молекула каталазы расщепляет за одну секунду. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле (см. гл. 14). Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым " строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений. Например, при расщеплении белков пищи в кишечнике на аминокислоты, последние поступают затем в клетки тела и там из них " собираются" (синтезируются) белки, присущие данному организму.
Самовоспроизведение (репродукция). Жизнь существует в виде дискретных биологических систем (клеток, организмов и т.д.) и существование каждой отдельно взятой биологической системы ограничено во времени. Поэтому поддержание жизни на любом уровне организации связано с репродукцией. Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.
Наследственность и изменчивость. Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). Полинуклеотидные цепи ДНК подразделяются на особые функциональные единицы (гены), являющиеся единицами генетической (наследственной) информации. В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система " записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. При " жесткой" наследственности не мог бы осуществляться и эволюционный процесс. Но живым организмам свойственна изменчивость, под которой понимают свойство живого приобретать новые признаки и утрачивать прежние. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям, т.е. приобретенные в течение индивидуальной жизни признаки не наследуются. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.
Индивидуальное развитие организмов. Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на " генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. Очевидно, что понятие " онтогенез" применимо и к одноклеточным организмам. Правомерно, также, говорить об индивидуальном развитии одно- и многоклеточных организмов, возникающих в результате бесполого размножения. Действительно, при делении, например, инфузории образуются дочерние особи-клетки, которые существенно отличаются от материнской клетки. Они мельче, лишены ряда органелл, формирующихся лишь с течение времени, в процессе индивидуального существования дочерних особей. Достигнув " зрелого" состояния дочерние организмы (в свою очередь претерпев деление) дадут начало новому поколению инфузорий. И хотя, при такой смене поколений, не происходит естественной смерти особей, можно говорить об их онтогенезе (от деления до деления этих одноклеточных организмов). Другой пример - размножение бесполым путем многоклеточных. Например, почкование у гидры. Здесь процесс онтогенеза разворачивается от момента возникновения почки на материнском организме (и отделении дочерней особи на определенном этапе ее развития) до естественной смерти дочерней особи. Эволюция организмов представляет собой необратимый процесс исторического развития живого. В ходе эволюции (филогенетического развития) происходит последовательная смена видов в результате процесса возникновения новых видов организмов. По своему характеру эволюция является прогрессивной, т.к. организация живых организмов в ходе эволюции прошла ряд ступеней - доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека (подробнее об этом см. в следующем разделе). С появлением человека возникла новая форма существования материи - социальная, высшая по сравнению с биологической и не сводимая к ней. В силу этого человек в отличие от всех других видов организмов представляет собой биосоциальное существо (подробнее см. в главе 14).
Раздражимость. Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении. У животных, не имеющих нервной системы, одноклеточных организмов и некоторых клеток многоклеточных организмов (например, фагоцитов крови) реакции на раздражение выражаются, в частности, в форме двигательных реакций - таксисов, пространственных перемещений. В зависимости от характера раздражения выделяют следующие таксисы: фототаксис, хемотаксис, термотаксис, геотаксис и т.д. У фотосинтезирующих организмов обычно ярко выражен положительный фототаксис (перемещение в зону, наиболее освещенную), гетеротрофным организмам чаще всего свойственен отрицательный фототаксис (избегание освещенных зон). Благодаря хемотаксису, фагоциты крови скапливаются вокруг, например, проникших в организм бактерий и осуществляют свою функцию - фагоцитоз (" пожирание") бактерий. Растения сравнительно с животными характеризуются малой подвижностью. Большинство движений у растений возникает как ответные реакции на раздражение светом, температурой, гравитацией, химическими факторами. Активные движения у растений наблюдаются двух типов: ростовые и сократительные. Первые движения более медленные, а вторые более быстрые. Ростовые движения связаны с влиянием на растение фактора, действующего в одном направлении. Это вызывает односторонний рост, а как следствие этого возникает изгиб. Такие изгибы органов растения получили название тропизмов. Любой тропизм может быть положительным или отрицательным. Положительным он называется тогда, когда растение изгибается по направлению к раздражителю, а отрицательным, если растение изгибается в противоположную от раздражителя сторону. Так, если поставить проростки растения на окно, то растущие растения изгибаются в одну сторону, по направлению к свету. Это явление получило название положительного фототропизма. Растение изгибается потому, что оно растет в этих условиях неравномерно. Сторона растения, направленная к свету, растет более медленно, чем противоположная. К сократительным движениям у растений можно отнести быстрые движения листьев у мимозы, кислицы, насекомоядных растений (например, росянки) при прикосновении к ним - настии. У мимозы черешки перистых листьев и отдельные листочки имеют особые участки с особыми клетками. При раздражении (прикосновении, толчке, тряске) клетки быстро теряют воду, внутриклеточное давление резко падает, и листочки складываются. В настоящее время высказываются предположения, что механизм быстрых движений связан также с наличием особых сократительных белков. У многоклеточных животных нервная и мышечная системы обеспечивают ответные двигательные реакции; развиваются формы опосредованной реактивной связи с раздражителем через высшую нервную деятельность и сознание. Благодаря раздражимости достигается уравновешивание организмов с внешней средой: организмы адекватно реагируют на изменения условий окружающей их среды изменениями в функционировании соответствующих элементов биологической системы и самой системы в целом. Явление раздражимости лежит в основе саморегуляции биологических систем, а в результате существования саморегуляции в системах поддерживается гомеостаз. Гомеостаз - это способность системы противостоять изменениям и сохранить относительное постоянство ее состава и свойств (поддержание определенной температуры тела, постоянство полного состава, осмотического давления и т.д.). Явление раздражимости лежит в основе адаптаций. Под адаптацией (приспособлением) понимается приспособление организма к непрерывно меняющимся условиям среды.
Билет №40. Современное состояние клеточной теории и ее значение в обосновании единства органического мира. Характеристика различных форм клеточной организации и их возникновение.
Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.
Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:
· Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, " одичавшими" генами.
· Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.
· Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.
· Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.
· Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, т.е. образуется оно в результате метаболизма клеток.
· Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма — клетки или «элементарные организмы».
Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.
Билет №41. Паразитизм как экологический феномен. Классификация паразитических форм животных.
Паразитизм — это универсальное, широко распространенное к живой природе явление, состоящее в использовании одного организма другим в качестве источника питания. При этом паразит причиняет хозяину вред вплоть до гибели.
Пути возникновения паразитизма. 1. Переход свободноживущих форм (хищников) к эктопаразитизму при увеличении времени возможного существования без пищи и времени контакта с жертвой. 2. Переход от комменсализма (сотрапезничества, нахлебничества, ситуации, когда хозяин служит лишь средой обитания) к эндопаразитизму в случае использования комменсалами не только отходов, но части пищевого рациона хозяина и даже его тканей. 3. Первичный эндопаразитизм в результате случайного, часто неоднократного заноса в пищеварительную систему хозяина яиц и цист паразитов. Особенности среды обитания паразитов. 1. Постоянный и благоприятный уровень температуры и влажности. 2. Обилие пищи. 3. Защита от неблагоприятных факторов. 4. Агрессивный химический состав среды обитания (пищеварительные соки). Особенности паразитов. 1. Наличие двух сред обитания: среда первого порядка — организм хозяина, среда второго порядка — внешняя среда. 2. Паразит имеет меньшие размеры тела и меньшую продолжительность жизни по сравнению с хозяином. 3. Паразиты отличаются высокой способностью к размножению, обусловленной обилием пищи. 4. Количество паразитов в организме хозяина может быть очень велико. 5. Паразитический образ жизни является их видовой особенностью.
Классификация паразитов В зависимости от времени, проводимом на хозяине, паразиты могут быть постоянные, если никогда не встречаются в свободноживущем состоянии (вши, чесоточные зудни, малярийный плазмодий), и временные, если связаны с хозяином только во время приема пищи (комары, клопы, блохи). По обязательности паразитического образа жизни паразиты бывают облигатные, если паразитический образ жизни — их непременная видовая особенность (например, гельминты), и факультативные, способные вести непаразитический образ жизни (многие паразиты растений). По месту обитания на хозяине паразиты делятся на эктопаразитов, живущих на поверхности организма хозяина (человеческая вошь, комары, москиты, слепни), внутрикожных паразитов, обитающих в толще кожных покровов хозяина (чесоточный зудень), полостных паразитов, обитающих в полостях различных органов хозяина, сообщающихся с внешней средой (бычий и свиной цепни) и собственно эндопаразитов, обитающих во внутренних органах организма хозяина, клетках и плазме крови (эхинококк, трихинелла, малярийный плазмодий). В дикой природе паразиты регулируют численность особей и популяциях хозяина. Особенности жизнедеятельности паразитов Жизненный цикл паразитов может быть простым и сложным. Простой цикл развития происходит без участия промежуточного хозяина, он характерен для эктопаразитов, простейших, некоторых геогельминтов. Сложный жизненный цикл характерен для паразитов, имеющих не менее чем одного промежуточного хозяина (широкий лентец). Расселение паразита осуществляется в течение всей его жизни. Неактивная покоящаяся стадия развития обеспечивает продолжение существования паразита во времени, активная подвижная стадия — расселение в пространстве. В целом, хозяин — это существо, организм которого является временным или постоянным местообитанием и источником питания паразита. Один и тот же вид хозяина может быть местообитанием и источником питания для нескольких видов паразитов. Для паразитов характерна смена хозяев, связанная с размножением или с развитием паразита. У многих паразитов имеется несколько хозяев. Окончательный (дефинитивный) хозяин — это вид, в котором паразит находится во взрослом состоянии и размножается половым путем. Промежуточных хозяев может быть один и более. Это виды, в которых паразит находится на личиночной стадии развития, а если размножается, то, как правило, бесполым путем. Резервуарный хозяин — это хозяин, в организме которого паразит сохраняет свою жизнеспособность, и где происходит накопление паразита. Человек является идеальным хозяином для паразита, потому что: 1) человек представлен многочисленными, повсеместно расселенными популяциями; 2) человек постоянно соприкасается с природными очагами болезней диких животных; 3) человек нередко живет в условиях перенаселения, что облегчает передачу паразита; 4) человек контактирует со многими видами животных 5) человек всеяден. Механизмы передачи паразита: фекально-оральный, воздушно-капельный, трансмиссивный, контагиозный Наиболее часто встречающимися у человека паразитами являются разнообразные черви - гельминты, вызывающие заболевания группы гельминтозов. Различают био-, геогельминтозы и контактные гельминтозы. Биогельминтозы - это заболевания, передача которых человеку происходит с участием животных, в чьем организме развивается возбудитель (эхинококкоз, альвеококкоз, тениоз, тениаринхоз дифиллоботриоз, описторхоз, трихинеллез). Геогельминтозы - это болезни, передача которых человеку происходит через элементы внешней среды, где развиваются личиночные стадии паразита (аскаридоз, трихоцефалез, некатороз) Контактные гельминтозы характеризуются передачей паразита непосредственно от больного или через окружающие его предметы (энтеробиоз, гименолепидоз).
|