Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Принцип двойственностиСтр 1 из 2Следующая ⇒
ФУНКЦИЙ ПО ПЕРЕМЕННЫМ. СОВЕРШЕННЫЕ ДИЗЪЮНКТИВНАЯ И КОНЪЮНКТИВНАЯ НОРМАЛЬНЫЕ ФОРМЫ
План лекции: 1. Принцип двойственности. 2. Разложение булевых функций по переменным. Совершенные дизъюнктивная и конъюнктивная нормальные формы.
Принцип двойственности
Функция Очевидно, что таблица истинности для двойственной функции Легко установить для функций 0, 1, 1) функция 0 двойственна 1; 2) функция 1 двойственна 0; 3) функция 4) функция 5) функция 6) функция Из определения двойственности следует, что
т. е. функция Принцип двойственности. Если формула Формулу Для доказательства этого утверждения необходимо проверить его справедливость для элементарных шагов суперпозиции Пусть, например, функция
Тогда
т. е. функция Доказательство справедливости принципа двойственности для шага
Тогда
т. е. функция Принцип двойственности позволяет упростить вывод основных тавтологий и имеет целый ряд полезных применений, которые будут рассмотрены далее. Пример 1. Из тождества Действительно,
Пример 2. Построение формулы для отрицания функции. Из определения двойственной функции следует
Получаем следующее правило: пусть формула Найдем отрицание для функции Так как
|