Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Операции над событиямиСтр 1 из 8Следующая ⇒
Специальная математика: Методические рекомендации по выполнению домашней контрольной работы / М.А.Сагадеева - Челябинск: ЧОУ Южно-Уральский институт управления и экономики, 2012.- 50 с.
Специальная математика: Методические рекомендации по выполнению домашней контрольной работы 140400.62 «Электроэнергетика и электротехника»
Ó Издательство ЧОУ ВПО «Южно-Уральский институт управления и экономики», 2012 СОДЕРЖАНИЕ
ВВЕДЕНИЕ. 4 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ЗАДАНИЯ ДЛЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ.. 40 РЕКОМЕНДУЕМЫЙ СПИСОК ЛИТЕРАТУРЫ.. 50
ВВЕДЕНИЕ Целью курса «Специальная математика» является обучение основам теории вероятностей – науки, изучающей закономерности массовых случайных явлений; математической статистики (описание, объяснение и предсказание явлений действительности на основе установленных законов) и теории случайных процессов. Основными задачами курса являются: 1. Освоение вероятностных и статистических методов исследования; изучение законов, управляющих массовыми случайными явлениями, в соответствии с дидактическими единицами ФГОС ВПО по дисциплине и включает следующие темы: - Аксиоматика теории вероятностей. - Случайная величина, ее функция распределения, математическое ожидание и дисперсия. - Распределение монотонной функции от случайной величины. - Системы случайных величин, условные плотности, зависимость и независимость случайных величин, корреляционный момент. - Закон больших чисел и центральная предельная теорема. - Точечные и интервальные оценки случайных величин. - Критерии проверки гипотез. - Статические характеристики случайных процессов. - Стационарный случайный процесс. Метод статистических испытаний. 2. Приобретение практических навыков обработки результатов наблюдений. Студент должен знать: - основные положения теории вероятностей, математической статистики и теории случайных процессов; - статистические методы исследования процессов и явлений; - методы моделирования случайных явлений, величин, процессов. Студент должен уметь: - решать вероятностные задачи; - применять методы математической статистики при исследовании процессов и явлений; - моделировать случайные явления на ЭВМ.
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
Основные понятия Определение. Событием называется всякий факт, который может произойти или не произойти в результате опыта. При этом тот или иной результат опыта может быть получен с различной степенью возможности. Т.е. в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда. В отношении друг друга события также имеют особенности, т.е. в одном случае событие А может произойти совместно с событием В, в другом – нет. Определение. События называются несовместными, если появление одного из них исключает появление других. Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте). Определение. Полной группой событий называется совокупность всех возможных результатов опыта. Определение. Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта. Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий. Определение. События называются равновозможными, если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью. В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного. Исходя из этих общих понятий можно дать определение вероятности. Определение. Вероятностью события А называется математическая оценка возможности появления этого события в результате опыта. Вероятность события А равна отношению числа, благоприятствующих событию А исходов опыта к общему числу попарно несовместных исходов опыта, образующих полную группу событий. Пример. В коробке находится 10 шаров. 3 из них красные, 2 – зеленые, остальные белые. Найти вероятность того, что вынутый наугад шар будет красным, зеленым или белым. Появление красного, зеленого и белого шаров составляют полную группу событий. Обозначим появление красного шара – событие А, появление зеленого – событие В, появление белого – событие С. Тогда в соответствием с записанными выше формулами получаем: Определение. Относительной частотой события А называется отношение числа опытов, в результате которых произошло событие А к общему числу опытов. Отличие относительной частоты от вероятности заключается в том, что вероятность вычисляется без непосредственного произведения опытов, а относительная частота – после опыта. Так в рассмотренном выше примере, если из коробки наугад извлечено 5 шаров и 2 из них оказались красными, то относительная частота появления красного шара равна: Операции над событиями
Определение. События А и В называются равными, если осуществление события А влечет за собой осуществление события В и наоборот. Определение. Объединением или суммой событий Аk называется событие A, которое означает появление хотя бы одного из событий Аk. Определение. Разностью событий А и В называется событие С, которое означает, что происходит событие А, но не происходит событие В. Определение. Дополнительным к событию А называется событие Определение. Элементарными исходами опыта называются такие результаты опыта, которые взаимно исключают друг друга и в результате опыта происходит одно из этих событий, также каково бы ни было событие А, по наступившему элементарному исходу можно судить о том, происходит или не происходит это событие. Совокупность всех элементарных исходов опыта называется пространством элементарных событий. Теорема (сложения вероятностей). Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий. Определение. Противоположными называются два несовместных события, образующие полную группу. Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления. Следствие 2: Сумма вероятностей противоположных событий равна единице. Определение. Событие А называется независимым от события В, вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет. Определение. Вероятность события В, вычисленная при условии, что имело место событие А, называется условной вероятностью события В. Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило. Также можно записать: Пример. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта. Обозначим появление хотя бы одной бубновой карты – событие А, появление хотя бы одной червонной карты – событие В. Таким образом нам надо определить вероятность события С = А + В. Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого. Всего в колоде 13 червонных и 13 бубновых карт. При вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна Пример. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей? Вероятность выпадения 6 очков при одном броске кости равна Пример. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности хотя бы одного выстрела, двух выстрелов, двух осечек. Вероятность выстрела при первом нажатии на курок (событие А) равна Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме Пример. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0, 7, а для второго – 0, 8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков. Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие Пример. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0, 2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными. Обозначим бракованную деталь – событие А, не бракованную – событие Пример. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0, 6, 0, 7, 0, 8, 0, 9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках. а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще. Вероятность того, что деталь находится только в одном ящике, равна
Искомая вероятность равна
|