Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формула полной вероятности. Пусть некоторое событие А может произойти вместе с одним из несовместных событий , составляющих полную группу событий






 

Пусть некоторое событие А может произойти вместе с одним из несовместных событий , составляющих полную группу событий. Пусть известны вероятности этих событий и условные вероятности наступления события А при наступлении события Hi

Теорема. Вероятность события А, которое может произойти вместе с одним из событий , равна сумме парных произведений вероятностей каждого из этих событий на соответствующие им условные вероятности наступления события А. Фактически эта формула полной вероятности уже использовалась при решении примеров, приведенных выше, например, в задаче с револьвером.

Пример. Один из трех стрелков производит два выстрела. Вероятность попадания в цель при одном выстреле для первого стрелка равна 0, 4, для второго – 0, 6, для третьего – 0, 8. Найти вероятность того, что в цель попадут два раза. Вероятность того, что выстрелы производит первый, второй или третий стрелок равна . Вероятности того, что один из стрелков, производящих выстрелы, два раза попадает в цель, равны: - для первого стрелка: - для второго стрелка: - для третьего стрелка:

Искомая вероятность равна:

Формула Бейеса (формула гипотез)

 

Пусть имеется полная группа несовместных гипотез с известными вероятностями их наступления . Пусть в результате опыта наступило событие А, условные вероятности которого по каждой из гипотез известны, т.е. известны вероятности . Требуется определить какие вероятности имеют гипотезы относительно события А, т.е. условные вероятности .

Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.

Эта формула называется формулой Бейеса. Если до испытания все гипотезы равновероятны с вероятностью , то формула Бейеса принимает вид:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал