Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение. 1 Основная погрешность аналогового регистратора определяется его классом точности






1 Основная погрешность аналогового регистратора определяется его классом точности. Погрешность всех электроизмерительных приборов согласно стандарту нормируется с 25 %-м запасом на старение, т.е. фактически погрешность нового прибора составляет не больше, чем 0, 8g. Следовательно, gрег =

=0, 8´ 0, 5=0, 4 (%).

2 У потенциометра преобладающей является погрешность дискретности, обусловленная конечным числом витков обмотки датчика, по которым скользит подвижный контакт. Эта погрешность имеет равномерное распределение. В этом случае gрег =0, 4 (%) можно считать половиной ширины этого равномерного распределения, и тогда %.

3 Погрешность от колебаний напряжения питания распределена по треугольному закону с принятыми пределами ±10 %. Поэтому максимальное значение этой погрешности %. Параметры этого распределения: энтропийный коэффициент k=2, 02; эксцесс e=2, 4; c=0, 645.

       
   
 
 

 


4 Погрешность наводки распределена арксинусоидально. Энтропийный ко-эффициент k=1, 11. Тогда

5 Погрешность смещения нуля потенциометра при колебании температуры является аддитивной, а закон ее распределения можно считать равномерным со средним значением 20°С и размахом ±12°С (так как температура в помещении меняется от 8 до 32°С). Максимальное значение этой погрешности при YТ= =±0, 1 % /10°С составляет %, так как kэ для равномерного распределения равен .

6 Суммирование погрешностей сводится к вычислению приведенной погрешности при х = 0, которая складывается из всех аддитивных составляющих, и в конце диапазона, которая складывается из всех составляющих.

При х=0 погрешность будет складываться из трех составляющих:

sп=0, 24 %, sТ=0, 07 %, sнп=1, 30 %.

Однако sт =0, 07 % меньше sнп =1, 3 % в 18, 5 раз. Так как суммирование под корнем будет производиться над квадратами величин, то ее вклад в результат будет ничтожным. Отсюда ясно, что этой погрешностью можно пренебречь и опустить из дальнейшего рассмотрения. Тогда

.

Для расчета погрешности в конце диапазона к полученному значению sн надо добавить погрешность наводки sнав.= 0, 45 %:

.

Для перехода к интервальной оценке в виде доверительного Dд = tSsS или энтропийного Dэ = kSsS значений необходимо знание не самого закона распределения результирующей погрешности, а лишь его одного числового параметра в виде квантильного множителя tS или энтропийного коэффициента kS.

Зависимости энтропийного коэффициента kS от соотношения суммируемых составляющих и их энтропийных коэффициентов могут быть представлены в виде семейства графиков (график 1 и график 2).

По оси абсцисс отложены значения относительного веса дисперсии второго из суммируемых распреде-лений в полной дисперсии , по оси ординат – значение энтропийного коэффициен-та kS образующейся при этом ком-позиции. Кривая 1 соответствует композиции двух нормальных рас-

пределений (kS = 2, 066 для любых значений веса р); кривая 2 – композиции равномерно распределенной и нормально распределенной погрешностей; кри-вая 3 – композиции двух равномерных распределений; кривая 4 –композиции арксинусоидальной и равномерно распределенной погрешностей; кривая 5 –для двух арксинусоидально распределенных погрешностей.

Кривые 1-3 соответствуют сумми-рованию равномерного, треугольного и нормального распределений с дискретным двузначным распре-делением, а кривые 4-6 – суммированию нормального распределения соответственно с арксинусоидальным, равномерным и экспоненциальным.

 

       
   
 

 


При х=0 относительный вес sнп в полной дисперсии равен

. Так как sнп распределена по треугольному закону, а sп – по равномерному (кривая 2 на графике 2). Отсюда .

Тогда при х=0 доверительные границы

=1, 25× 1, 3=1, 63 (%)

в конце диапазона весовой коэффициент sнав. в полной дисперсии равен

Поскольку sнав. распределена по арксинусоидальному, а sн – по нормальному законам, воспользуемся кривой 4 на графике 2.

.

Тогда в конце диапазона доверительные границы =2, 066× 1, 39=

=2, 87 (%).

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал