Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вычислительный эксперимент
Научное исследование реального процесса можно проводить теоретически или экспериментально, которые проводятся независимо друг от друга. Такой путь познания истины носит односторонний характер. В современных условиях развития науки и техники стараются проводить комплексное исследование объекта. Этого можно добиться на основе новой, удовлетворяющей требованиям времени, методологии и технологии научных исследований. Широкое применение ЭВМ в математическом моделировании, достаточно мощная теоретическая и экспериментальная база позволяют говорить о вычислительном эксперименте как о новой технологии и методологии в научных и прикладных исследованиях. Вычислительный эксперимент — метод изучения устройств или физических процессов с помощью математического моделирования. Он предполагает, что вслед за построением математической модели проводится ее численное исследование, позволяющее «проиграть» поведение исследуемого объекта в различных условиях или в различных модификациях Вычислительный эксперимент - это эксперимент над математической моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах явления, описываемого математической моделью. Проведение крупных комплексных расчётов следует рассматривать как эксперимент, проводимый на ЭВМ или вычислительный эксперимент. Вычислительный эксперимент играет ту же роль, что и обыкновенный эксперимент при исследованиях новых гипотез. Современная гипотеза почти всегда имеет математическое описание, над которым можно выполнять эксперименты. Вычислительный эксперимент занимает промежуточное положение между натурным экспериментом и аналитическим исследованием. Натурный (физический) эксперимент при надлежащей постановке может, вообще говоря, дать исчерпывающие и надежные результаты. И все же во многих случаях предпочтение отдается вычислительному эксперименту. Дело в том, что в вычислительном эксперименте в роли опытной установки выступает не конкретное физическое устройство, а программа. Ее построение и последующие модификации, как правило, требуют существенно меньших затрат, чем подобные манипуляции над реальным объектом. Кроме того, в опытной установке нередко просто невозможно бывает воссоздать некоторые критические режимы или экстремальные условия. Поэтому математическое моделирование может оказаться практически единственно возможным способом исследования. При аналитическом подходе так же, как и в вычислительном эксперименте, строится математическая модель. Но исследуется эта модель исключительно посредством аналитических выкладок, без привлечения каких-либо численных методов. Если аналитических выкладок оказывается достаточно, то данный подход приводит к строгому точному решению. Отмеченные достоинства вычислительного эксперимента вывели его в число основных методов исследования таких крупных физических и инженерно-технических проблем, как задачи ядерной энергетики, освоения космического пространства и др. Программные комплексы, обслуживающие вычислительный эксперимент, объемны и сложны, в их создание вовлечен многочисленный отряд программистов. Поэтому особую актуальность приобретает изучение возникающих здесь конфигурационных построений, которые, как будет видно из дальнейшего изложения, постоянно находятся в центре внимания участников такого рода разработок. При введении этого понятия следует особо выделить способность компьютера выполнять большой объем вычислений, реализующих математические исследования. Иначе говоря, компьютер позволяет произвести замену физического, химического и т. д. эксперимента экспериментом вычислительным. При проведении вычислительного эксперимента можно убедиться в необходимости и полезности последнего, особенно в случаях, когда провести натуральный эксперимент затруднительно или невозможно. Вычислительный эксперимент, по сравнению с натурным, значительно дешевле и доступнее, его подготовка и проведение требует меньшего времени, его легко переделывать, он даёт более подробную информацию. Кроме того, в ходе вычислительного эксперимента выявляются границы применимости математической модели, которые позволяют прогнозировать эксперимент в естественных условиях. Поэтому использование вычислительного эксперимента ограничивается теми математическими моделями, которые участвуют в проведении исследования. По этой причине вычислительный эксперимент не может заменить полностью эксперимент натурный и выход из этого положения состоит в их разумном сочетании. В это случае в проведении сложного эксперимента используется широкий спектр математических моделей: прямые задачи, обратные задачи, оптимизированные задачи, задачи идентификации. В настоящее время технологический цикл вычислительного эксперимента принято подразделять на ряд технологических этапов. И хотя такое деление в значительной степени условно, тем не менее оно позволяет лучше понять существо этого метода проведения теоретических исследований. Теперь давайте рассмотрим основные этапы вычислительного эксперимента. Основные этапы вычислительного эксперимента. (рис.1). Рис.1. Этапы вычислительного эксперимента Э т а п 1. Построение математической модели (составление уравнений, описывающих исследуемое явление). Э т а п 2. Выбор численных методов расчета (построение дискретной модели, аппроксимирующей исходную математическую задачу, построение разностной схемы, разработка вычислительного алгоритма и т. д.). Э т а п 3. Создание программы, реализующей вычислительный алгоритм. Э т а п 4. Проведение расчетов и обработка полученной информации. Э т а п 5. Анализ результатов расчетов, сравнение (если это возможно) с натурным экспериментом. Обычно на последнем (5-м) этапе исследователь приходит к заключению о том, что необходимо внести определенные изменения в решения, принятые на этапах 1, 2 или 3. Так, может выясниться, что построенная модель недостаточно хорошо отражает особенности исследуемого явления. В этом случае модель корректируется, вносятся соответствующие поправки в численные методы и реализующие их программы и выполняется новый расчет. Тем самым цикл вычислительного эксперимента воспроизводится в полном объеме. При анализе результатов могут быть выявлены какие-либо недостатки используемых численных методов, связанные, в частности, с соображениями точности или эффективности. Изменение методов влечет за собой изменение соответствующих программ и т. д. Иначе говоря, цикл повторяется в несколько сокращенном виде (этапы 2–5). Наконец, может оказаться неудачным некоторое программное решение, например выбранный способ работы с внешней памятью. Пересмотр таких решений приводит к повторению этапов 3–5.
|