Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Путь С-4 (цикл Хетча-Слэка-Карпилова). Его особенности.
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включающая более 500 видов покрытосеменных, у которых, первичными продуктами фиксации СС2 и восстановления являются четырех-углеродные соединения. Их называют С4 растениями. К С4-растениям относится ряд культурных растений преимущественно тропического и субтропического происхождения — кукуруза, просо, сорго, сахарный тростник и многие злостные сорняки. Как правило, это высокопродуктивные растения, устойчиво осуществляющие фотосинтез при значительных повышениях температуры и в засушливых условиях. Для листьев С4-растений характерно анатомическое строение кранц-типа т. е. наличие явно отличающихся друг от друга фотосинтезирующих клеток двух типов, которые располагаются концентрическими кругами: ради- * ально расположенные вокруг проводящих пучков клетки обкладки и основной мезофилл. Клетки обкладки проводящего пучка содержат крупные, лишенные гран (агранальные) хлоропласты. В клетках мезофилла находятся более мелкие гранальные хлоропласты. Эти два типа клеток физиологически не равноценны и специализируются на выполнении разных звеньев фотосинтеза. С4-цикл можно разделить на две стадии: карбоксилирование, происходящее в клетках мезофилла, и декарбоксилирование и синтез углеводов, идущие в клетках обкладки, проводящих пучков. Общим для всех С4-расте-ний является то, что карбоксилированию подвергается фосфо-енолпировиноградная кислота (ФЕП) при участии ФЕП-карбок-силазы и образуется щавелевоуксусная кислота (ЩУК), которая восстанавливается до яблочной кислоты или аминируется с образованием аспарагиновой кислоты. Щавелевоуксусная, яблочная и аспарагиновая кислоты являются четырехуглеродными соединениями. По способу декарбоксилиро-вания при участии НАДФН или НАД-малатдегидрогеназы (МДГ, называемой также малик-энзимом и яблочным ферментом) или ФЭП — карбоксики-назы (ФЕП-КК) у С4-растений можно выделить три группы: НАДФ-МДГ, НАД-МДГ и ФЕП-КК-типы соответственно. У НАДФ-МДГ-растений главными метаболитами, вовлеченными в обмен между клетками, являются малат и пируват (ПВК), у НАД-МДГ-растений - аспартат и аланин и у ФЕП-КК-растений - аспартат и ФЕП. Важнейшие сельскохозяйственные культуры — кукуруза, сорго, сахарный тростник и такие распространенные сорняки, как сыть ежовник, щетинник, гумай, относятся к НАДФ-МДГ-типу. Рассмотрим С4-цикл восстановления С02 на примере этих растений. С02, поступающий в лист через устьица, попадает в цитоплазму клеток мезофилла, где при участии ФЕП-карбоксилазы вступает в реакцию с ФЕП, образуя щавелевоук-сусную кислоту (оксалоацетат). Затем уже в хлоропластах оксало-ацетат восстанавливается до яблочной кислоты (малата) за счет НАДФН, образующегося в ходе световой фазы фотосинтеза; ЩУК в присутствии NН4 может превращаться также в аспартат. Затем малат переносится в хлоропласта клеток обкладки сосудистого пучка, где он подвергается окислительному декарбо-ксилированию, продуктом которого является пировиноградная кислота (ПВК). Последняя снова диффундирует в мезофилл, где при участии АТФ, образованной в световой фазе, происходит регенерация ФЕП, после чего цикл карбоксилирования повторяется с участием новой молекулы С02. Образовавшиеся в результате окислительного декарбоксилирования малата С02 и НАДФН поступают в цикл Кальвина, что приводит к образованию ФГК и других продуктов, свойственных Сз-растениям. Следовательно, именно клетки обкладки выполняют роль основной ассимилирующей ткани, поставляющей сахара в проводящую систему. Клетки мезофилла выполняют вспомогательную функцию — подкачку С02 для цикла Кальвина. Таким образом, С4-путь обеспечивает более полное усвоение С02, что особенно важно для тропических растений, где основным лимитирующим фактором фотосинтеза является концентрация С02. 54. 54.Продуктивность фотосинтеза (работы А.А. Ничипоровича). Вопрос о связи между фотосинтезом и урожаем растений получил более подробное освещение в работах А.А. Ничипоровича. Согласно Ничипоровичу, биологический урожай (Vбиол) равен сумме приростов сухой массы за каждые сутки вегетационного периода. Для того чтобы перейти от массы усвоенного С02 к сухому веществу, необходимо ввести коэффициент 0, 64 (1 г усвоенного С02 соответствует 0, 64 г углеводов). Однако не все образовавшееся сухое вещество накапливается. Частично оно расходуется в процессе дыхания, теряется при опадении отдельных органов, а также при экзоосмосе. Эти потери составляют около 25—30%. Вместе с тем определенное количество веществ поступает через корневую систему (5—10% от общей массы растения). Если все это учесть, то К. составит 0, 50. Следовательно, общее накопление сухой массы растении зависит от интенсивности фотосинтеза, коэффициента эффективности (куда входит трата на процесс дыхания), размера листовой поверхности и суммы дней вегетационного периода. Размер листовой поверхности в посеве выражают величиной, получившей название листового индекса. Листовой индекс — это отношение суммарной поверхности листьев к площади почвы, занимаемой посевом. Если листовой индекс равен 3, значит, над гектаром посева площадь листьев равна 30 тыс. м2. Оптимальная площадь листьев различна для растений с разным расположением листьев. Чем более вертикально расположены листья, тем меньше они затеняют нижележащие и тем выше значение оптимальной площади листьев. Так, для клевера оптимальное значение листового индекса равно 3—4, а для пшеницы оно доходит до 7. Как видно из приведенных уравнений, накопление сухой массы зависит не только от площади листьев, но и от интенсивности фотосинтеза. В этом отношении также имеются широкие возможности. Расчеты показывают, что интенсивность фотосинтеза может достигать 100 мг С02/дм2xч, тогда как наиболее часто встречающиеся значения этого показателя соответствуют величинам в 10—15 мг С02/дм2xч.
Применительно к сельскохозяйственным растениям широкое распространение получила теория фотосинтетической продуктивности А.А. Ничuпоровича. Основные положения этой теории сводятся к следующему. Агроном обязан разместить растения на площади участка, создавая такие фитоценозы, в которых формировался бы оптимальный листовой индекс, оптимальных размеров достигал агроценоз и по вертикали. Большое значение автор теории фотосинтетической продуктивности придает селекции растений на низкорослость, когда значительная часть ассимилятов идет на формирование зерна и плодов, селекции на компактность крон плодовых, особенно для Сибири. Уместно напомнить, что в лесном хозяйстве только за счет правильного ориентирования посадок лесных культур по странам света можно добиться повышения продуктивности фотосинтеза на 20 %. Чистую продуктивность фотосинтеза АА. Ничипорович предложил определять по формуле: Фч.пр. = (М2 - М1) / Т -Л, где М1 и М2 - сухая масса растений в начале и конце учетного периода, и, следовательно, разница М2- М1 представляет собой прирост сухого вещества за время Т; Л - листовая поверхность (средняя величина). Обычно чистую продуктивность фотосинтеза, рассчитанную по этой формуле, выражают в граммах сухой массы, накопленной в течение суток на 1 м2 листовой поверхности.
Эффективность усвоения С02 С4-растениями увеличивается также за счет подачи НАДФН в хлоропласта клеток обкладки. Эти хлоропласта имеют агранаЛьное строение и специализируются на темно-вой фазе фотосинтеза, здесь практически не происходит нециклическое фотофосфорилирование-. На один агранальный хлоропласт в среднем приходится 8—10 гранальных хлоропластов, осуществляющих первичную фиксацию С02 и нециклическое фотофосфорилирование. Такая компартментация процессов и кооперация функционирования тканей обеспечивают повышение продуктивности растений и позволяют накапливать С02 в органических кислотах для осуществления фотосинтеза даже при закрытых устьицах в наиболее жаркое время дня.
|