![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Моделирование процесса нормализации систолического давления под действием лекарственных препаратов ⇐ ПредыдущаяСтр 5 из 5
1. Переключиться на лист 4 и присвоить ему имя Гипертония. 2. Оформить заголовки столбцов и параметры модели по приведенному образцу.
В столбцах таблицы будут приведены следующие данные: ü А – дни приема лекарственного препарата (длительность курса лечения – 30 дней); ü В – значения систолического давления, рассчитанные по точной математической модели, которая показывает его плавное снижение от начальной величины до нормы в течение курса лечения; ü С – значения статистического разброса, учитывающего тот факт, что на давление оказывают влияние не только лекарственные препараты, но и другие причины, строгий учет которых практически невозможен. К ним относятся, например, стрессовые ситуации, повышенная метеочувствительность, вредные привычки и т.п. ü D – модельные значения давления с учетом разброса. 3. Заполнить столбец А числовыми данными аналогично п. 4.12. Числа должны показывать дни применения лекарственного препарата и лежать в пределах от 0 до 29. 4. В столбце В получить значения давления для экспоненциальной модели, показывающей плавное снижение давления до нормального значения без учета случайного разброса. Эта модель описывается формулой D = (D0 – Dn) EXP(-kt/М) + Dn где D – текущее значение давления, которым должны быть заполнены ячейки столбца В; t – время, прошедшее с начала лечения (приведено в столбце А). Параметры модели: D0 – начальное значение давления пациента до лечения (ячейка Е2); Dn – давление в норме (ячейка Е3); k – эффективность лекарственного препарата (ячейка Е4); М – масштабный коэффициент, позволяющий выразить значения эффективности в диапазоне, принятом для данного случая (ячейка Е6).
Для этого в ячейку В2 ввести приведенную выше формулу, выраженную по правилам, принятым в Excel (по аналогии с п. 7.4) и скопировать ее на рабочий диапазон столбца. В таблице параметрам модели присвоены некоторые начальные значения, задающие настройку модели. Впоследствии они будут изменяться, давая тем самым возможность моделирования различных реальных ситуаций. 5. В столбце С получить значения случайного разброса в значениях давления. Функция получения случайного числа в Excel выглядит следующим образом: =СЛЧИС() Однако следует иметь в виду, что эта функция возвращает случайное число в диапазоне от 0 до 1, а для построения модели следует получить случайное число в диапазоне от –10 до 10 (для того чтобы максимальный случайный разброс был равен 20 – значению параметра, приведенного в ячейке Е5, а среднее значение случайного разброса равно нулю). Формула, которая дает случайное число в этом диапазоне, выглядит следующим образом: RN = N(R1-0, 5) где RN – случайный разброс в заданном диапазоне; N – значение диапазона (содержимое ячейки Е5); R1 – случайный разброс в диапазоне 0 – 1. В ячейку С2 ввести вышеприведенную формулу, выраженную по правилам, принятым в Excel, и скопировать ее на рабочий диапазон столбца. 6. В столбце D получить окончательный результат – модель, описывающую экспоненциальный спад с учетом случайного разброса. Для этого в ячейку D2 ввести формулу, по которой подсчитывается сумма чисел из ячеек B2 и C2 и скопировать ее на весь рабочий диапазон. 7. Построить диаграмму типа графика, рядами данных на диаграмме должны быть числовые значения столбцов В и D, а подписями по оси Х – числовые данные столбца А. 8. Исследовать поведение модели в зависимости от эффективности лекарственного препарата. Подобрать такое значение эффективности, чтобы давление приблизилось к норме к концу курса лечения. 9. Исследовать поведение модели при различных значениях максимального случайного разброса. 10. С помощью разработанной модели посмотреть динамику изменения давления пациента с 5 по 35 день.
|