Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дать определения асимметрии и эксцесса статистического распределения и рассказать о их назначении.
(определения асимметрии и эксцесса; их назначение; различные значения этих величин) В анализе вариационных рядов применяются специальные показатели, позволяющие охарактеризовать расхождения между эмпирическим и нормальным распределениями как с качественной, так и с количественной стороны. Нормальное распределение строго симметрично. Фактически распределения, построенные по эмпирическим данным, как правило, асимметричны, т. е. смещены по отношению к оси симметрии нормального распределения влево или вправо. Для определения направления величины этого смещения (скошенности) употребляется коэффициент асимметрии. Момент третьего порядка используется при оценке асимметрии. Простейшим показателем ассиметрии является разность . В эмпирических распределениях центральный момент будет отличаться от нуля в зависимости от характера асимметрии: при левосторонней асимметрии он будет меньше нуля, при правосторонней - больше нуля. Коэффициент асимметрии позволяет проводить сравнения между собой различных распределений. Принято считать, что асимметрия выше 0, 5 (независимо от знака) считается значительной. Если асимметрия меньше 0, 25, она считается незначительной. Четвертый центральный момент используется для оценки эксцесса распределения, т. е. его островершинности по отношению к нормальному распределению. Центральный момент четвертого порядка для нормального распределения равен 3. Коэффициент эксцесса для эмпирического распределения положителен при островершинности изучаемого распределения по отношению к нормальному и отрицателен при плосковершинности. Распределение оценивается как предположительно близкое к нормальному, если установлено, что от 50 до 80 % всех значений располагаются в пределах одного стандартного отклонения от среднего арифметического, и коэффициент эксцесса по абсолютной величине не превышает значения равного двум. Необходимо отметить, что хотя показатели асимметрии и эксцесса характеризуют непосредственно лишь форму распределения признака в пределах изучаемой совокупности, однако их определение имеет не только описательное значение. Часто асимметрия и эксцесс дают определенные указания для дальнейшего исследования явлений.
|