Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод дифференциального исчисления.
Теоретической основой для количественной оценки роли отдельных факторов в динамике результативного (обобщающего) показателя является дифференцирование. В методе дифференциального исчисления предполагается, что общее приращение функций (результирующего показателя) различается на слагаемые, где значение каждого из них определяется как произведение соответствующей частной производной на приращение переменной, по которой вычислена данная производная. Рассмотрим задачу нахождения влияния факто-ров на изменение результирующего показателя методом дифференциального исчисления на примере функции от двух переменных. Пусть задана функция z = f(x, у), тогда, если функция дифференцируема, ее приращение можно выразить как
где Δ x(x1 - xo) – изменение первого фактора;
Влияние факторов х и у на изменение z определяется в этой случае как
и
а их сумма представляет собой главную (линейную относительно приращения факторов) часть приращения дифференцируемой функции. Следует отметить, что параметр Рассмотрим применение метода на примере конкретной функции: z = xy. Пусть известны начальные и конечные значения факторов и результирующего показателя (х0, у0, z0, x1, y1, z1), тогда влияние факторов на изменение результирующего показателя определяется соответственно формулами:
Легко показать, что остаточный член в линейном разложении функции z = xy равен Действительно, общее изменение функции составило
Таким образом, в методе дифференциального исчисления так называемый неразложимый остаток, который интерпретируется как логическая ошибка метода дифференцирования, просто отбрасывается. В этом состоит «неудобство» дифференцирования для экономических расчетов, в которых, как правило, требуется точный баланс изменения результативного показателя и алгебраической суммы влияния всех факторов.
|