Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод дифференциального исчисления.






Теоретической основой для количественной оценки роли отдельных факторов в динамике результативного (обобщающего) показателя является дифференцирование.

В методе дифференциального исчисления предполагается, что общее приращение функций (результирующего показателя) различается на слагаемые, где значение каждого из них определяется как произведение соответствующей частной производной на приращение переменной, по которой вычислена данная производная. Рассмотрим задачу нахождения влияния факто-ров на изменение результирующего показателя методом дифференциального исчисления на примере функции от двух переменных. Пусть задана функция z = f(x, у), тогда, если функция дифференцируема, ее приращение можно выразить как

 

где – изменение функций;

Δ x(x1 - xo) – изменение первого фактора;

– изменение второго фактора;

– бесконечно малая величина более высокого порядка, чем

Влияние факторов х и у на изменение z определяется в этой случае как

и

а их сумма представляет собой главную (линейную относительно приращения факторов) часть приращения дифференцируемой функции. Следует отметить, что параметр мал при достаточно малых изменениях факторов и его значения могут существенно отличаться от нуля при больших изменениях факторов. Т. к. этот метод дает однозначное разложение влияния факторов на изменение результирующего показателя, то это разложение может привести к значительным ошибкам в оценке влияния факторов, поскольку в ней не учитывается величина остаточного члена, т. е. .

Рассмотрим применение метода на примере конкретной функции: z = xy. Пусть известны начальные и конечные значения факторов и результирующего показателя (х0, у0, z0, x1, y1, z1), тогда влияние факторов на изменение результирующего показателя определяется соответственно формулами:

, .

Легко показать, что остаточный член в линейном разложении функции z = xy равен

Действительно, общее изменение функции составило , а разность между общим изменением и вычисляется по формуле

Таким образом, в методе дифференциального исчисления так называемый неразложимый остаток, который интерпретируется как логическая ошибка метода дифференцирования, просто отбрасывается. В этом состоит «неудобство» дифференцирования для экономических расчетов, в которых, как правило, требуется точный баланс изменения результативного показателя и алгебраической суммы влияния всех факторов.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал