Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Четыре вида взаимодействий и их характеристика

Все структурные объекты мира объединяются в системы вследствие взаимодействий между собой. Под взаимодействием понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

В природе существуют качественно различные системы связанных объектов. Ядра — связанные системы протонов и нейтронов; атомы — связанные ядра и электроны; макротела — совокупность атомов и молекул; Солнечная система — " связка" планет и массивной звезды; галактика — " связка" звезд. Наличие связанных систем объектов говорит о том, что должно существовать нечто такое, что скрепляет части системы в целое. Чтобы " разрушить" систему частично или полностью, нужно затратить энергию. Взаимное влияние частей системы или структурных единиц происходит посредством полей (гравитационного, электрического, магнитного и других) и характеризуется энергией взаимодействия. В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному. Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий. Кратко охарактеризуем каждый из этих четырех видов взаимодействий.

В порядке возрастания интенсивности эти фундаментальные взаимодействия представляются следующим образом: гравитационное взаимодействие; слабое взаимодействие; электромагнитное взаимодействие; сильное взаимодействие. Именно эти взаимодействия в конечном счете отвечают за все изменения в природе, именно они являются источником всех преобразований материальных тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия.

Прежде всего следует сказать о том, что является общим для этих фундаментальных взаимодействий. Иначе говоря: как понимает современная физика сущность взаимодействия? Как уже отмечалось, еще в середине XIX в. с созданием теории электромагнитного поля выяснилось, что передача взаимодействия осуществляется не мгновенно (принцип дальнодействия), а с конечной скоростью посредством некоторого посредника — непрерывно распределенного в пространстве поля (принцип близкодействия). Скорость распространения электромагнитного поля равна скорости света

Однако уже в первой четверти XX в., с появлением квантовой механики значительно углубилось представление о физическом поле. В свете квантово-волнового дуализма любое поле является не непрерывным, а имеет дискретную структуру, ему должны соответствовать определенные частицы, кванты этого поля. Например, квантами электромагнитного поля являются фотоны. Когда заряженные частицы обмениваются между собой фотонами, это приводит к появлению электромагнитного поля. Фотоны и являются переносчиками электромагнитного взаимодействия.

Аналогичным образом и другие виды фундаментальных взаимодействий имеют свои поля и соответствующие частицы, переносящие это полевое взаимодействие. Изучение конкретных свойств, закономерностей этих полей и частиц — носителей фундаментальных взаимодействий — главная задача современной физики.

Сильные (ядерные) взаимодействия. Наличие в ядрах одинаково заряженных протонов и нейтральных частиц говорит о том, что должны существовать взаимодействия, которые гораздо интенсивнее электромагнитных, ибо иначе ядро не могло образоваться. Эти взаимодействия (их называют сильными) проявляются лишь в пределах ядра. Этот вид взаимодействия обеспечивает связь нуклонов в ядре. Константа сильного взаимодействия имеет величину порядка 1. Наибольшее расстояние, на котором проявляется сильное взаимодействие (радиус действия ), составляет примерно 10-13 см. Сильное взаимодействие. Последнее в ряду фундаментальных взаимодействий — сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, — Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием (при существенном участии и слабого взаимодействия). Но и человек научился вызывать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем более сильное, чем электромагнитное. Впоследствии оно было обнаружено и получило название «сильное взаимодействие».

Выяснилось, что, хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, за пределами ядра оно не ощущается. Сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Главная функция сильного взаимодействия в природе — создание прочной связи между нуклонами (протонами и нейронами) в ядрах атомов. При этом столкновение ядер или нуклонов, обладающих высокими энергиями, приводит к разнообразным ядерным реакциям, в том числе реакции термоядерного синтеза на Солнце, которая является основным источником энергии на Земле.

Вместе с тем выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы.

 

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 1960-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков

 

Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой — малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и воплощает единство предельно малого и предельно большого — микромира и мегамира, элементарной частицы и всей Вселенной.

 

Электромагнитные взаимодействия. Ими обусловлены связи в атомах, молекулах и обычных макротелах. Энергия ионизации атома, т. е. энергия отрыва электрона от ядра, определяет значение электромагнитного взаимодействия, существующего в атоме. Теплота парообразования, т. е. энергия перехода жидкость — пар (при атмосферном давлении), определит, правда довольно грубо, значение межмолекулярных взаимодействий в теле. Последние же имеют электромагнитное происхождение. Константа взаимодействия равна 10-3. Радиус действия не ограничен ().Электромагнетизм. По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.). Но долгое время электрические и магнитные явления изучались независимо друг от друга. И только в середине XIX в. Дж. К. Максвелл объединил учения об электричестве и магнетизме в единой теории электромагнитного поля. А существование электрона (единицы электрического заряда) было твердо установлено в 1890-е гг. Но не все элементарные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. Этим электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.

 

Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные — притягиваются. Но в отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами — северный полюс и южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс — монополь. Но все они заканчивались неудачей. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые современные теории допускают возможность существования магнитного монополя

 

Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц неотрывно от этих частиц. Но при ускоренном движении частиц электромагнитное поле «отрывается» от них и участвует в независимой форме электромагнитных волн. При этом радиоволны (103—1012 Гц), инфракрасное излучение (1012— 3, 7 1014 Гц), видимый свет (3, 7 1014—7, 5 1014 Гц), ультрафиолетовое излучение (7, 5 1014—3 1017 Гц), рентгеновское излучение (3 1017— 3 1020 Гц) и гамма-излучение (3 102—1023 Гц) представляют собой электромагнитные волны различной частоты. Причем между соседними диапазонами резких границ нет (длина электромагнитной волны с ее частотой связана соотношением: λ = c/v, где λ — длина волны, v — частота, с— скорость света).

 

Электромагнитное взаимодействие (как и гравитация) является дальнодействующим, оно ощутимо на больших расстояниях от источника. Как и гравитация, оно подчиняется закону обратных квадратов. Электромагнитное взаимодействие проявляется на всех уровнях материи — в мегамире, макромире и микромире.

 

Электромагнитное поле Земли простирается далеко в космическое пространство, мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. В то же время электромагнитное взаимодействие определяет структуру атомов и молекул (положительно заряженное ядро и отрицательно заряженные электроны). Оно отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных): силы упругости, трения, поверхностного натяжения, им определяются свойства агрегатных состояний вещества, химических превращений, оптические явления, явления ионизации, многие реакции в мире элементарных частиц и др.

 

 

Слабое взаимодействие. Это взаимодействие ответственно за все виды Р-распада ядер (включая е-захват), за многие распады элементарных частиц, а также за все процессы взаимодействия нейтрино с веществом. Константа взаимодействия равна по порядку величины 10-15. Слабое взаимодействие, как и сильное, является короткодействующим. Как отмечалось, из большого списка элементарных частиц только электрон, протон, фотон и нейтрино всех типов являются стабильными. Под влиянием " внутренних причин" нестабильные свободные частицы за те или иные характерные времена превращаются в другие частицы. Медленные распады с характерным временем 10-10—10_6 с происходят за счет так называемого слабого взаимодействия, тогда как быстрый распад (10-16 с) происходит под влиянием электромагнитных взаимодействий. Слабое взаимодействие. К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц. Поэтому с его проявлением столкнулись при открытии радиоактивности и исследовании бета-распада

У бета-распада обнаружилась в высшей степени странная особенность. Создавалось впечатление, что в этом распаде как будто нарушается закон сохранения энергии, что часть энергии куда-то исчезает. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она — нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

 

Но предсказание нейтрино — это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами, но было известно, что внутри ядер нет таких частиц. Как же они возникали? Выяснилось, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино. Какие же силы вызывают такой распад? Анализ показал, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой, которой соответствует некоторое «слабое взаимодействие».

 

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного. Там, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительные расстояния. Радиус слабого взаимодействия очень мал (10-16 см). Потому оно не может влиять не только на макроскопические, но даже на атомные объекты и ограничивается субатомными частицами. Кроме того, по сравнению с электромагнитным и сильным взаимодействиями слабое взаимодействие протекает чрезвычайно медленно.

 

Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии. Слабое взаимодействие играет в природе очень важную роль. Оно является составной частью термоядерных реакций на Солнце, звездах, обеспечивая синтез пульсаров, взрывов сверхновых звезд, синтез химических элементов в звездах и др.

 

Теория слабого взаимодействия была создана в конце 1960-х гг. Создание этой теории явилось крупным шагом на пути к единству физики.

 

 

Гравитационные взаимодействия (тяготения). Притяжение тел к Земле, существование Солнечной системы, звездных систем (галактик) обусловлено взаимодействием сил тяготения, или иначе — гравитационными взаимодействиями. Эти взаимодействия универсальны, т. е. применимы к любым микро- и макрообъектам. Однако они существенны лишь для тел огромных астрономических масс и для формирования структуры и эволюции Вселенной как целого. Гравитационные взаимодействия очень быстро ослабевают для объектов с малыми массами и практически не играют роли для ядерных и атомных систем. Проявления гравитации количественно были изучены одними из первых. Это не случайно, ибо источником гравитации являются массы тел, а дальность гравитационного взаимодействия не ограничена. Константа взаимодействия имеет значение порядка 10-39. Радиус действия не ограничен (r = °°). Гравитационное взаимодействие является универсальным, ему подвержены все без исключения элементарные частицы. Однако в процессах микромира гравитационное взаимодействие ощутимой роли не играет. Характеристики видов взаимодействий приведены в табл. 6.1. В вопросах строения и развития мира как целого роль гравитации становится определяющей. Исследование же конкретных небесных объектов (звезд, пульсаров, квазаров и др.) невозможно без привлечения всех видов фундаментальных взаимодействий.

Несомненно, приведенная классификация взаимодействий отражает современный уровень развития науки. В будущем, возможно, взаимодействия будут либо объединены, либо их останется меньше, если обнаружатся связи между константами взаимодействия. Например, уже удалось описать в рамках единой теории электромагнитное и слабое взаимодействия. Между константами взаимодействия и характеристиками Вселенной существует какая-то удивительная зависимость. Например, отношение радиуса Метагалактики (R = 5 1027 см) к размерам атома равно отношению электромагнитных и гравитационных сил, действующих между элементарными частицами. Гравитация обладает рядом особенностей, резко отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенсивность. Гравитационное взаимодействие в 1039 раз меньше силы взаимодействия электрических зарядов [1]. Поэтому в описании взаимодействий элементарных частиц оно обычно не учитывается. В микромире гравитация ничтожна.

 

1 Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступной наблюдению части Вселенной.

 

Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной? Все дело во второй удивительной черте гравитации — ее универсальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притягивают нас.

 

Кроме того, гравитация — дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

 

Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось [1].

 

1 Хотя в традициях квазинаучной мифологии есть целая область, которая называется левитацией — поиск «фактов» антигравитации.

 

Весьма трудно развиваются представления о квантовании гравитации. Тем не менее согласно общим теоретико-физическим представлениям гравитационное взаимодействие должно подчиняться квантовым законам так же, как и электромагнитное. (Иначе возникают множественные противоречия в основаниях современной физики, в том числе связанные с принципом неопределенности и др.) В таком случае гравитационному взаимодействию должно соответствовать поле с квантом гравитации — гравитоном (нейтральная частица с нулевой массой покоя и спином 2). Квантовая гравитация приводит к появлению представления о дискретности свойств пространства-времени, понятиям элементарной длины, кванта пространства r ≈ 10-33см, и элементарного временного интервала, кванта времени t ≈ 10-43 с. Последовательная квантовая теория гравитации пока не создана.

 

К сожалению, возможности современной экспериментальной гравитационной физики и астрономии не позволяют зафиксировать квантовые эффекты гравитации в силу их чрезвычайной слабости. Тем не менее явления, в которых проявляются квантовые свойства гравитации, по-видимому, существуют. Они проявляют себя в очень сильных гравитационных полях, где происходят квантовые процессы рождения частиц (точка сингулярности, начальные моменты возникновения Вселенной, гравитационный коллапс, черные дыры (см. 11.4 и 11.7)).

 

 

 

Проблема единства физики. Познание есть обобщение действительности, и поэтому цель науки — поиск единства в природе, связывание разрозненных фрагментов знания в единую картину. Для того чтобы создать такую единую систему, нужно открыть глубинное связующее звено между различными отраслями знания. Поиск таких связей — одна из главных задач научного исследования. Всякий раз, когда удается установить такие новые связи, значительно углубляется понимание окружающего мира, формируются новые способы познания, которые указывают путь к не известным ранее явлениям.

 

 

Установление глубинных связей между различными областями природы — это одновременно и синтез знания, и новый метод, направляющий научные исследования по непроторенным дорогам. Так, выявление Ньютоном связи между притяжением тел в земных условиях и движением планет ознаменовало собой рождение классической механики, на основе которой построена технологическая база современной цивилизации. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомно-молекулярную теорию вещества. В середине прошлого столетия Максвелл создал единую электромагнитную теорию, охватившую как электрические, так и магнитные явления. Затем в 1920-х гг. Эйнштейн предпринимал попытки объединить в единой теории электромагнетизм и гравитацию.

 

Но к середине XX в. положение в физике радикально изменилось: были открыты два новых фундаментальных взаимодействия — сильное и слабое. При создании единой физики приходится считаться уже не с двумя, а с четырьмя фундаментальными взаимодействиями. Это несколько охладило пыл тех, кто надеялся на быстрое решение проблемы единства физики. Однако сам замысел под сомнение всерьез не ставился.

 

В современной теоретической физике господствует точка зрения, что все четыре (или хотя бы три) взаимодействия представляют собой явления одной природы и может быть найдено их единое теоретическое описание. Перспектива создания единой теории мира физических элементов (на основе одного-единственного фундаментального взаимодействия) — высший идеал современной физики. Это главная мечта физиков. Но долгое время она оставалась лишь мечтой, и очень неопределенной.

 

Однако во второй половине XX в. появились предпосылки осуществления мечты и уверенность, что это дело отнюдь не отдаленного будущего. Похоже, что вскоре она вполне может стать реальностью. Решающий шаг на пути к единой теории был сделан в 1960—1970-х гг. с созданием сначала теории кварков, а затем и теории электрослабого взаимодействия. Появились основания считать, что мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков зреет убеждение, что начинают вырисовываться контуры единой теории сильного, слабого и электромагнитного взаимодействий — Великого объединения. А там не за горами и единая теория всех фундаментальных взаимодействий — Супергравитация.

 

 

<== предыдущая лекция | следующая лекция ==>
Как это обычно выглядит? | III. Заболевания защитного аппарата глаза.
Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.014 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал