![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пенообразователи (Geling agent)
Чтобы придать пищевым продуктам требуемую консистенцию и улучшить ее, применяют пищевые добавки, изменяющие их реологические свойства. Ассортимент веществ, улучшающих консистенцию, достаточно широк - это загустители, гелеобразователи, пищевые поверхностно-активные вещества (ПАВ), а также стабилизаторы физического состояния. Загустители и гелеобразователи, введенные в жидкую пищевую систему в процессе приготовления пищевого продукта, связывают воду, в результате чего пищевая коллоидная система теряет свою подвижность и консистенция пищевого продукта изменяется. Эффект изменения консистенции (повышение вязкости или гелеобразование) будет определяться, в частности, особенностями химического строения введенной добавки. Улучшители консистенции применяют преимущественно в производстве пищевых продуктов, имеющих неустойчивую консистенцию и гомогенную структуру. Такие продукты, как, например, мороженое или мармелад, сыры или колбасы, при использовании и кинологии их производства указанных пищевых добавок приобретают качественно более высокие показатели. Перечень загустителей и гелеобразователей, разрешенных к применению в производстве пищевых продуктов в России, включает свыше 50, добавок (табл.20). Таблица 20 Пищевые загустители и гелеобразователи, разрешенные к применению при производстве пищевых продуктов в Российской Федерации
В химическом отношении эти пищевые добавки очень сходны. Это макромолекулы, в которых равномерно распределены гидрофильные группы, с которыми вступает во взаимодействие вода. У гелеобразователей возможно обменное взаимодействие с неорганическими ионами, в особенности с ионами водорода и кальция, с меньшими органическими молекулами, например олигосахаридами. В обоих случаях вода оказывается связанной, что приводит к потере ею подвижности в коллоидной системе и изменению консистенции пищевого продукта. Загустители образуют с водой высоковязкие растворы, а гелеобразователи — гели. При этом одни и те же вещества в зависимости от их концентрации в пищевом продукте могут выполнять роль как загустителя, так и гелеобразоватсля. Различают загустителе и гелеобразователи натуральные, полусинтетические и синтетические. Натуральные и полусинтетические добавки этой группы применяют при производстве пищевых продуктов, синтетические - только при производстве косметических изделий. К натуральным загустителям и гелеобразователям относят растительные камеди и слизи из семян льна и айвы, рожкового дерева, астрагала, аравийской акации; агар, агароид, пектин, желатин, альгинат натрия. К полусинтетическим - производные натуральных веществ, физико-химические свойства которых изменены в требуемом направлении введением определенных функциональных групп: метил целлюлоза, этил целлюлоза, карбоксиметилцеллюлоза, амилопектин, модифицированные крахмалы. Подавляющее большинство загустителей и гелеобразователей со статусом пищевых добавок относится к классу полисахаридов (гликанов). Исключение составляет гелеобразователь желатин, имеющий белковую природу. В группу пищевых добавок целлюлозной природы (Е460-Е467) входят продукты механической и химической модификации и деполимеризации натуральной целлюлозы, представляющей собой линейный полимер, который состоит из соединенных β -1, 4-гликозидными связями остатков D-глюкопиранозы. Наличие β -гликозидной связи приводит на уровне вторичных и третичных структур (конформации полимерных цепей, упаковки цепей в фибриллы) к формированию линейных молекул с зонами кристалличности (высокоориентированными участками), включающими отдельные аморфные (неориентированные) участки. Такое строение обуславливает большую механическую прочность волокон целлюлозы и их инертность по отношению к большинству растворителей и реагентов. ЦЕЛЛЮЛОЗА. В пищевой технологии находят применение целлюлоза и ее производные: микрокристаллическая целлюлоза (Е 460), метил целлюлоза (Е 461), карбоксиметилцеллюлоза (Е 466), гидрооксипропилцеллюлоза (Е 463), гидроксипропилметилцеллюлоза (Е 464), метилэтилцеллюлоза (Е 465). Эти пищевые добавки используют в производстве мороженого, кондитерских изделий и соусов. Производные целлюлозы применяют в качестве диетических волокон при создании сбалансированных продуктов питания. Они являются также эффективными загустителями, стабилизаторами и эмульгаторами. Целлюлоза является основным веществом растительных клеток и составляет от 50 до 70% древесины, 98% хлопка, волокна льна и конопли. Чистая целлюлоза не растворяется в воде. Чтобы сделать целлюлозу растворимой, ее подвергают химической модификации путем введения реакционноспособных групп в гидроксильные группы молекулы полисахарида (метил-, карбоксиметил-, гидроксипропил и др.). Благодаря этому получают продукты разрыхленной структуры. Среди производных целлюлозы наибольшее значение имеют метил целлюлоза и карбоксиметил целлюлоза, которые получают, воздействуя адкилирующими реактивами, например галоидными алкилами или диалкилсульфатами, на алкал ил целлюлозу. Метилцеллюлоза имеет вид волокнистого порошка от белого до серо-белого цвета. При содержании менее двух метильных остатков на один остаток глюкозы она растворима в холодной воде, а в теплой - переходит в гель. Растворимость метилцеллюлозы уменьшается с повышением температуры. Она практически не растворяется в воде при температуре, близкой к температуре кипения. Гелеобразование в растворах метил целлюлозы вызвано главным образом гидрофобным взаимодействием неполярных группировок макромолекул. Карбоксиметилцеллюлоза имеет вид белого волокнистого порошка, растворимого в воде. Ее получают из чистой целлюлозы хлопка. Она адсорбирует воду в 50-кратном количестве, образуя коллоидные системы. Микрокристаллическая целлюлоза — это частично гидролизованная кислотой целлюлоза. Поэтому она отличается от натуральной целлюлозы укороченной молекулярной цепью, отсутствием ассоциативных связей. Водные дисперсии микрокристаллической целлюлозы гелеподобны при концентрации около 1%. Причем с увеличением концентрации дисперсионных систем (около 1, 2...1, 5%) их псевдопластичность становится более заметной. Кроме того, вязкость систем возрастает во времени, особенно через 18 ч хранения. Использование микрокристаллической целлюлозы в качестве загустителя в эмульсии типа вода-масло позволяет снизить содержание в ней масла до 20%. Объединенным комитетом экспертов ФАО/ВОЗ по пищевым добавкам установлены ДСД производных целлюлозы для человека в количестве до 30 мг на 1 кг массы тела. Традиционно эти добавки используются при изготовлении хлебобулочных и кондитерских изделий, молочных и низкожирных эмульсионных продуктов, а также безалкогольных напитков, где выступают в качестве эмульгаторов и стабилизаторов многокомпонентных дисперсных систем, суспензий и эмульсий, обеспечивают необходимые консистенцию и вкусовые свойства. Пектины, наряду с галактоманнанами (гуаровой камедью и камедью ПЕКТИНОВЫЕ ВЕЩЕСТВА (Е 440) - улучшители консистенции: загустители, уплотнители, гелеобразователи, стабилизаторы и эмульгаторы. Пектиновые вещества представляют собой высокомолекулярные полисахариды, входящие в состав клеточных стенок и межклеточных образований совместно с целлюлозой, гемицеллюлозой и лигнином. В понятие «пектиновые вещества» входят гидратопектин (растворимый пектин), протопектин (нерастворимый в воде пектин), пектиновые кислоты и пектинаты, пектовые кислоты и пектаты. Основным структурным признаком пектиновых веществ являются линейные молекулы полигалактуроновой кислоты, в которой мономерные звенья связаны α -1, 4 гликозидной связью. Основными свойствами пектиновых веществ, которые определяют области их применения в пищевой промышленности, являются студнеобразующая и комплексообразующая способности. Студнеобразующая способность пектина зависит от ряда факторов: молекулярной массы, степени этерификации, количества балластных по отношению к пектину веществ, температуры и рН среды, содержания функциональных групп. Высокоэтерифированные пектины применяют в качестве студнеобразователя при производстве кондитерских (мармелад, пастила, зефир, желейные конфеты) и консервных (желе, джем, конфитюр, фрукты в желе) изделий; в качестве стабилизаторов при производстве молочных напитков, майонеза, маргарина, аналогов сливочного масла, соусов, мороженого, рыбных консервов; в качестве средства, замедляющего черствление в производстве хлебобулочных изделий; в качестве загустителей при производстве фруктовых соков и киселей. Низкоэтерифированные пектины применяют при изготовлении овощных желе, паштетов, студней, сыров и пищевых продуктов детского, лечебного и профилактического питания. Для АМИДИРОВАННОГО ПЕКТИНА, у которого часть свободных карбоксильных групп превращена в амиды, установлена величина ДСП - 25 мг/кг массы тела. Амидированный пектин проверен Объединенным комитетом экспертов ФАО/ВОЗ по пищевым добавкам. Результаты долгосрочных исследований на крысах не содержат никаких доказательств канцерогенной активности этого вещества; исследования тератогенного действия также показали отсутствие неблагоприятных последствий. Молекулы высокоэтерифицированных пектинов могут образовывать пектин-протеиновые комплексы. При рН 4, 0-4, 2 они вступают во взаимодействие с молекулами казеина молока, что приводит к изменению общего заряда белковых молекул и обеспечивает их физическую стабильность в кислой среде. Кроме того, пектины как растворимые пищевые волокна являются физиологически ценными пищевыми добавками (функциональными ингредиентами), присутствие которых в пищевых продуктах традиционного рациона способствует улучшению состояния здоровья человека. Специфическое физиологическое воздействие растворимых пищевых волокон связано с их способностью снижать уровень холестерина в крови, нормализовать деятельность желудочно-кишечного тракта, связывать и выводить из организма некоторые токсины и тяжелые металлы. Рекомендуемое суточное потребление пектиновых веществ в рационе здорового человека составляет 5-6 г. Галактоманнаны представляют собой гетерогликаны, содержащиеся в семенах стручковых растений и выполняющие функцию предотвращения обезвоживания семян. Коммерческие препараты растительных галактоманнанов получили название камедей. Наиболее распространенными в качестве пищевых добавок в этой группе являются галактоманнаны семян двух видов растений — ryapa (Cyamopsistetragonolobus), произрастающего в Индии и Пакистане, и рожкового дерева (Ceratonia siligua), произрастающего на побережье Средиземного моря. Камедь рожкового дерева (цареградского стручка, цератонии) - Е 410 получают, используя плоды дерева Caratonia siligua. Полисахаридная структура образована из длинных линейных цепей, состоящих из молекул D-маннозы с боковой цепью D-галактозы. Распределение боковых цепей галактозы не упорядочено. Соотношение маннозы и галактозы 4: 2. Камедь рожкового дерева плохо растворяется и набухает в холодной воде. Для интенсификации процесса гидратации раствор полисахарида нагревают до 63...65°С. При концентрации 2...3% образуется густая пастообразная масса, но не гель. В пищевой промышленности камедь рожкового дерева применяется в основном в качестве загустителя.. Гуаровая камедь (Е412), используемая в пищевой промышленности, содержит (в %): полисахарида - 85, 0; протеина - 4, 0; сырой клетчатки - 1, 5; золы - 0, 5; воды - 9, 0. Ее получают из семян циамонсиса. После крахмала и гуммиарабика гуаровая камедь является наиболее распространенным гидроколлоидом в производстве пищевых и кормовых продуктов. Гуаровая камедь имеет нейтральные вкус и запах, растворяется в холодной воде, образуя вязкие растворы в области рН 2, 5...7, 0. Она хорошо совместима с другими гидроколлоидами - ксантаном, каррагинаном. При этом их совместное применение взаимно усиливает структурообразующие свойства, проявляемые каждым полимером в отдельности. Гуаровую камедь применяют как загуститель при производстве мороженого, соусов, низкокалорийных продуктов. Камеди вырабатываются также некоторыми видами деревьев, растущих в тропиках и субтропиках. В пищевой промышленности используют камеди гуммиарабика (Gum Acacia) - Е 414, трагаканта (Gum Tragacanth) - Е 413, карайя (Gum Саrауа) - Е 416. Трагакант - по химическому составу это смесь нейтральных и кислых полисахаридов, состоящая в основном из L-арабинозы, D-ксилозы, D-галактозы и галактуроновой кислоты. Трагакант медленно набухает в холодной воде, образуя вязкие коллоидные суспензии или полугели, растворяется в теплой воде. Реологические свойства растворов трагаканта стабильны во времени, но изменяются в зависимости от происхождения и степени очистки камеди. Гуммиарабик (аравийская камедь) - это полисахарид, в состав которого входит D-галактоза, L-арабиноза и D-глюкуроновая кислота. Гуммиарабик выделяется только двумя видами африканской акации: Acacia Senegal и Acacia seual. Существуют химические различия между этими двумя типами камедей из рода Acacia, которыми и обусловлены их различные свойства. Гуммиарабик из акации сенегальской имеет большую молекулярную массу, высокоразветвленную химическую структуру. Водные растворы этой камеди не обладают высокой вязкостью при концентрации менее 30%. Камедь карайя (индийский трагакант) - по химическому составу
|