Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Результаты выборочного обследования доходов населения






Район Численность населения, чел. Обследовано, чел. Доход в расчете на 1 человека
средняя, тыс. руб. дисперсия
I II III     2, 9 2, 5 2, 7 1, 3 1, 1 1, 6

 

Необходимо определить границы среднедушевых доходов населения по области в целом при уровне вероятности 0, 997.

Решение. Рассчитаем среднюю из внутригрупповых дисперсий:

Средняя и предельная ошибки выборки:

Рассчитаем выборочную среднюю:

тыс.руб.

В результате проведенных расчетов с вероятностью 0, 997 можно сделать вывод, что среднедушевые доходы жителей данной области находятся в следующих границах (тыс. руб.):

При определении необходимого объема типической выборки учитывается средняя из внутригрупповых дисперсий:

(повторный отбор);

(безповторный отбор).

Полученное значение общего объема выборки необходимо распределить по типическим группам пропорционально их численности, чтобы определить, какое количество единиц следует отобрать из каждой группы:

где Ni – объем i -и группы;

n, - объем выборки из /-и группы.

Серийная выборка. Эта выборка используется в тех случаях, когда единицы изучаемой совокупности объединены в небольшие равновеликие группы или серии. Единицей отбора в этом случае является серия. Серии отбираются с использованием собственно-случайной либо механической выборки, а внутри отобранных серий обследуются все без исключения единицы.

В основе расчета средней ошибки серийной выборки лежит межгрупповая дисперсия:

(повторный отбор);

(бесповторный отбор),

где xi - число отобранных i - серий;

R - общее число серий.

Межгрупповую дисперсию при равновеликих группах вычисляют следующим образом:

где хi – средняя i-и серии;

х – общая средняя по всей выборочной совокупности.

Пример

В целях контроля качества комплектующих из партии изделий, упакованных в 50 ящиков по 20 изделий в каждом, была произведена 10%-ная серийная выборка. По попавшим в выборку ящикам среднее отклонение параметров изделия от нормы соответственно составило 9 мм, 11, 12, 8 и 14 мм. С вероятностью 0, 954 определите среднее отклонение параметров по всей партии в целом.

Решение. Выборочная средняя:

мм.

Величина межгрупповой дисперсии:

С учетом установленной вероятности Р = 0, 954 (t = 2) предельная ошибка выборки составит:

мм.

Произведенные расчеты позволяют заключить, что среднее отклонение параметров всех изделий от нормы находится в следующих границах:

Для определения необходимого объема серийной выборки при заданной предельной ошибке используются следующие формулы:

(повторный отбор);

(безповторный отбор).

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал